scholarly journals N-terminal domain swapping and metal ion binding in nitric oxide synthase dimerization

1999 ◽  
Vol 18 (22) ◽  
pp. 6271-6281 ◽  
Author(s):  
Brian R. Crane ◽  
Robin J. Rosenfeld ◽  
Andrew S. Arvai ◽  
Dipak K. Ghosh ◽  
Sanjay Ghosh ◽  
...  
1998 ◽  
Vol 273 (30) ◽  
pp. 18950-18958 ◽  
Author(s):  
Uma Siddhanta ◽  
Anthony Presta ◽  
Baochen Fan ◽  
Dennis Wolan ◽  
Denis L. Rousseau ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 930
Author(s):  
Xiaohan Xu ◽  
Weidong Wang ◽  
Yi Sun ◽  
Anqi Xing ◽  
Zichen Wu ◽  
...  

Nitric oxide (NO) as a momentous signal molecule participates in plant reproductive development and responds to various abiotic stresses. Here, the inhibitory effects of the NO-dominated signal network on the pollen tube growth of Camellia sinensis under low temperature (LT) were studied by microRNA (miRNA) omics analysis. The results showed that 77 and 71 differentially expressed miRNAs (DEMs) were induced by LT and NO treatment, respectively. Gene ontology (GO) analysis showed that DEM target genes related to microtubules and actin were enriched uniquely under LT treatment, while DEM target genes related to redox process were enriched uniquely under NO treatment. In addition, the target genes of miRNA co-regulated by LT and NO are only located on the cell membrane and cell wall, and most of them are enriched in metal ion binding and/or transport and cell wall organization. Furthermore, DEM and its target genes related to metal ion binding/transport, redox process, actin, cell wall organization and carbohydrate metabolism were identified and quantified by functional analysis and qRT-PCR. In conclusion, miRNA omics analysis provides a complex signal network regulated by NO-mediated miRNA, which changes cell structure and component distribution by adjusting Ca2+ gradient, thus affecting the polar growth of the C. sinensis pollen tube tip under LT.


Author(s):  
Chi-Ming Wei ◽  
Margarita Bracamonte ◽  
Shi-Wen Jiang ◽  
Richard C. Daly ◽  
Christopher G.A. McGregor ◽  
...  

Nitric oxide (NO) is a potent endothelium-derived relaxing factor which also may modulate cardiomyocyte inotropism and growth via increasing cGMP. While endothelial nitric oxide synthase (eNOS) isoforms have been detected in non-human mammalian tissues, expression and localization of eNOS in the normal and failing human myocardium are poorly defined. Therefore, the present study was designed to investigate eNOS in human cardiac tissues in the presence and absence of congestive heart failure (CHF).Normal and failing atrial tissue were obtained from six cardiac donors and six end-stage heart failure patients undergoing primary cardiac transplantation. ENOS protein expression and localization was investigated utilizing Western blot analysis and immunohistochemical staining with the polyclonal rabbit antibody to eNOS (Transduction Laboratories, Lexington, Kentucky).


2001 ◽  
Vol 120 (5) ◽  
pp. A684-A684
Author(s):  
I DANIELS ◽  
I MURRAY ◽  
W GODDARD ◽  
R LONG

2001 ◽  
Vol 120 (5) ◽  
pp. A176-A176
Author(s):  
P KOPPITZ ◽  
M STORR ◽  
D SAUR ◽  
M KURJAK ◽  
H ALLESCHER

Sign in / Sign up

Export Citation Format

Share Document