scholarly journals Noise-based ballistic wave passive seismic monitoring. Part 1: body waves

2020 ◽  
Vol 221 (1) ◽  
pp. 683-691 ◽  
Author(s):  
F Brenguier ◽  
R Courbis ◽  
A Mordret ◽  
X Campman ◽  
P Boué ◽  
...  

SUMMARY Unveiling the mechanisms of earthquake and volcanic eruption preparation requires improving our ability to monitor the rock mass response to transient stress perturbations at depth. The standard passive monitoring seismic interferometry technique based on coda waves is robust but recovering accurate and properly localized P- and S-wave velocity temporal anomalies at depth is intrinsically limited by the complexity of scattered, diffracted waves. In order to mitigate this limitation, we propose a complementary, novel, passive seismic monitoring approach based on detecting weak temporal changes of velocities of ballistic waves recovered from seismic noise correlations. This new technique requires dense arrays of seismic sensors in order to circumvent the bias linked to the intrinsic high sensitivity of ballistic waves recovered from noise correlations to changes in the noise source properties. In this work we use a dense network of 417 seismometers in the Groningen area of the Netherlands, one of Europe's largest gas fields. Over the course of 1 month our results show a 1.5 per cent apparent velocity increase of the P wave refracted at the basement of the 700-m-thick sedimentary cover. We interpret this unexpected high value of velocity increase for the refracted wave as being induced by a loading effect associated with rainfall activity and possibly canal drainage at surface. We also observe a 0.25 per cent velocity decrease for the direct P-wave travelling in the near-surface sediments and conclude that it might be partially biased by changes in time in the noise source properties even though it appears to be consistent with complementary results based on ballistic surface waves presented in a companion paper and interpreted as a pore pressure diffusion effect following a strong rainfall episode. The perspective of applying this new technique to detect continuous localized variations of seismic velocity perturbations at a few kilometres depth paves the way for improved in situ earthquake, volcano and producing reservoir monitoring.

2016 ◽  
Author(s):  
Beatriz Benjumea ◽  
Albert Macau ◽  
Anna Gabàs ◽  
Sara Figueras

Abstract. We combine geophysical well logging and passive seismic measurements to characterize the near surface geology of an area located in Hontomin, Burgos (Spain). This area has some near-surface challenges for a geophysical study. The irregular topography is characterized by limestone outcrops and unconsolidated sediments areas. Additionally, the near surface geology includes an upper layer of pure limestones overlying marly limestones and marls (Upper Cretaceous). These materials lie on top of Low Cretaceous siliciclastic sediments (sandstones, clays, gravels). In any case, decreasing seismic velocity with depth is expected. The geophysical datasets used in this study include sonic and gamma ray logs at two boreholes and passive seismic measurements: 224 H/V stations and 3 arrays. Well logging data defines two significant changes in the P-wave velocity log within the Upper Cretaceous layer and one more at the Upper to Lower Cretaceous contact. This technique has also used for refining the geological interpretation. The passive seismic measurements provide a map of sediment thickness with maximum of around 40 m and shear-wave velocity profiles from the array technique. A comparison between seismic velocity coming from well logging and array measurements defines the resolution limits of the passive seismic techniques and helps for its interpretation. This study shows how these low-cost techniques can provide useful information about near-surface complexity that could be used for designing a geophysical field survey or for seismic processing steps such as statics or imaging.


2021 ◽  
Author(s):  
Nicola Piana Agostinetti ◽  
Alberto Villa ◽  
Gilberto Saccorotti

Abstract. We use PoroTOMO experimental data to compare the performance of Distributed Acoustic Sensing (DAS) and geophone data in executing standard exploration and monitoring activities. The PoroTOMO experiment consists of two "seismic systems": (a) a 8.6 km long optical fibre cable deployed across the Brady geothermal field and covering an area of 1.5 x 0.5 km with 100 m long segments, and (b) an array of 238 co-located geophones with an average spacing of 60 m. The PoroTOMO experiment recorded continuous seismic data between March 10th and March 25th 2016. During such period, a ML 4.3 regional event occurred in the southwest, about 150 km away from the geothermal field, together with several microseismic local events related to the geothermal activity. The seismic waves generated from such seismic events have been used as input data in this study. For the exploration tasks, we compare the propagation of the ML 4.3 event across the geothermal field in both seismic systems in term of relative time-delay, for a number of configurations and segments. Defined the propagation, we analyse and compare the amplitude and the signal-to-noise ratio (SNR) of the P-wave in the two systems at high resolution. For testing the potential in monitoring local seismicity, we first perform an analysis of the geophone data for locating a microseismic event, based on expert opinion. Then, we a adopt different workflow for the automatic location of the same microseismic event using DAS data. For testing the potential in monitoring distant event, data from the regional earthquake are used for retrieving both the propagation direction and apparent velocity of the wavefield, using a standard plane-wave-fitting approach. Our results indicate that: (1) at a local scale, the seismic P-waves propagation and their characteristics (i.e. SNR and amplitude) along a single cable segment are robustly consistent with recordings from co-located geophones (delay-times δt ∼ 0.3 over 400 m for both seismic systems) ; (2) the interpretation of seismic wave propagation across multiple separated segments is less clear, due to the heavy contamination of scattering sources and local velocity heterogeneities; nonetheless, results from the plane-wave fitting still indicate the possibility for a consistent detection and location of the event; (3) at high-resolution (10 m), large amplitude variations along the fibre cable seem to robustly correlate with near surface geology; (4) automatic monitoring of microseismicity can be performed with DAS recordings with results comparable to manual analysis of geophone recordings (i.e. maximum horizontal error on event location around 70 m for both geophones and DAS data) ; and (5) DAS data pre-conditioning (e.g., temporal sub-sampling and channel-stacking) and dedicated processing techniques are strictly necessary for making any real-time monitoring procedure feasible and trustable.


2020 ◽  
Author(s):  
Florent Brenguier ◽  
Aurelien Mordret ◽  
Yehuda Ben-Zion ◽  
Frank Vernon ◽  
Pierre Boué ◽  
...  

<p>Laboratory experiments report that detectable seismic velocity changes should occur in the vicinity of fault zones prior to earthquakes. However, operating permanent active seismic sources to monitor natural faults at seismogenic depth has been nearly impossible to achieve. The FaultScan project (Univ. Grenoble Alpes, Univ. Cal. San Diego, Univ. South. Cal.) aims at leveraging permanent cultural sources of ambient seismic noise to continuously probe fault zones at a few kilometers depth with seismic interferometry. Results of an exploratory seismic experiment in Southern California demonstrate that correlations of train-generated seismic signals allow daily reconstruction of direct P body-waves probing the San Jacinto Fault down to 4 km depth. In order to study long-term earthquake preparation processes we will monitor the San Jacinto Fault using such approach for at least two years by deploying dense seismic arrays in the San Jacinto Fault region. The outcome of this project may facilitate monitoring the entire San Andreas Fault system using the railway and highway network of California. We acknowledge support from the European Research Council under grant No.~817803, FAULTSCAN.</p>


1990 ◽  
Vol 80 (4) ◽  
pp. 807-831 ◽  
Author(s):  
Jon B. Fletcher ◽  
Tom Fumal ◽  
Hsi-Ping Liu ◽  
Linda C. Carroll

Abstract To investigate near-surface site effects in granite rock, we drilled 300-m-deep boreholes at two sites which are collocated with stations from the digital array at Anza, California. The first borehole was sited at station KNW (Keenwild fire station), which is located along a ridge line about 8.7 km east of the San Jacinto Fault zone. Station PFO (Piñon Flat Observatory), chosen for the second site, is another 6 km further to the east of station KNW and is located on a gently sloping hillside. We logged each borehole for P- and S-wave velocities, as well as for crack density and orientation. P waves were generated by striking a plate with a hammer at the surface. A tool consisting of weighted anvils driven by compressed air against end plates along a 3.5-m beam was used to generate shear waves. Signals were recorded downhole with a three-component sensor package at 2.5-m intervals from the surface to 50 m depth, and at 5-m intervals from 50 m depth to the bottom of the hole. Velocities were determined by differencing the measured arrival times of first arrivals or peaks over each interval in depth. Travel times were computed for the first breaks at shallow depths, however, below about 100 m depth, times were computed for the first peaks rather than for first breaks since the first arrival was no longer clearly distinguishable. The KNW site yielded a shear velocity of 1.9 km/sec by only 30 m in depth and reached close to 2.6 km/sec at the bottom of the hole. P-wave velocities at KNW were also high at 5.4 km/sec starting at 120 m depth. The PFO site had similar but slightly higher shear-wave velocities. The bottom-hole shear-wave velocity reached 3.0 km/sec, and the P-wave velocity was 5.4 km/sec. Shear-wave attenuation was computed using both the pulse rise time and spectral ratio methods. At station KNW, attenuation was significant only in an interval between 17.5 and approximately 40 m in depth. Over the top 50 m, attenuation corresponding to a Q of about 8 was obtained. A total T* of 0.004 sec was measured for this interval. Pulse rise times also increased rapidly in this zone. The spectral ratio data for station PFO yields two peaks in attenuation above 50 m. Similar to the attenuation found for station KNW, the peak in attenuation corresponds to a Q of about 11, averaged over the top 50 m. Spectra of the seismic pulses produced by the hammer give good signal between 20 to 80 Hz. Significant motion perpendicular to the polarizations of the first shear-wave arrival was recorded within a few meters of the surface. Apparently, the rock structure is sufficiently complicated that body waves are being converted (SH to SV at oblique incidence) very close to the surface. The presence of these elliptical particle motions within a mere few m of the pure shear-wave source suggests that the detection of polarizations perpendicular to the main shear arrival at a single location at the surface is not, by itself, a good method for detecting shearwave splitting within the upper few tens of kilometers of the earth's crust. Crack densities and orientations were determined from televiewer records. These records showed cracks with a preferred direction at station KNW and of a greater density than at station PFO. At station PFO, crack densities were smaller and more diffuse in orientation.


Geophysics ◽  
2013 ◽  
Vol 78 (4) ◽  
pp. B159-B176 ◽  
Author(s):  
Mohammed Y. Ali ◽  
Braham Barkat ◽  
Karl A. Berteussen ◽  
James Small

A low-frequency passive seismic experiment using an array of 49 3C broadband seismometers was conducted over an onshore oil field in the emirate of Abu Dhabi in the United Arab Emirates. The aim of the experiment was to understand the characteristics and origins of the microseism (0.15–0.4 Hz) and microtremor (about 1–6 Hz) signals recorded, the latter having been reported as being a hydrocarbon indicator above several reservoirs in the region. The recorded array data were analyzed for their polarization, apparent velocities, and wavefront azimuths using various techniques, including spectral and time-frequency analyses, particle motion, H/V spectral ratios, and high-resolution frequency-wavenumber (f-k) analyses. In the frequency range of 0.15–0.4 Hz, the dominant feature observed consisted of double-frequency microseisms peaks generated by the nonlinear interactions of ocean waves with the shoreline along the coasts of the Arabian Sea and the Arabian Gulf. The f-k analyses confirmed that microtremor events in the frequency range of 2–3 Hz have an azimuth pointing toward a major oil pipeline and oil plant facilities to the west–southwest of the study area, as well as a motorway to the southeast. This would indicate that the microtremor events are probably caused by local sources, including the continuous movement of oil through the pipeline, the noise from oil plant facilities, as well as nearby traffic noise. This interpretation was confirmed by the polarization analysis performed on the data. The data also indicated that no clear correlation exists between the microtremor signal and local meteorological conditions. Although some body waves with an infinite apparent velocity generated by earthquakes were recorded, no other body waves that could have possibly been generated by hydrocarbon reservoirs were observed using the analyses techniques used in this study. Therefore, our results indicated that for the site under investigation, the microseism and the microtremor signals detected could not be related to the presence of hydrocarbon accumulations in the subsurface, but instead they may be attributed to local anthropogenic sources.


Geophysics ◽  
1995 ◽  
Vol 60 (4) ◽  
pp. 1178-1186 ◽  
Author(s):  
M. Reza Daneshvar ◽  
Clarence S. Clay ◽  
Martha K. Savage

We have developed a method of processing seismic signals generated by microearthquakes to image local subsurface structure beneath a recording station. This technique uses the autocorrelation of the vertically traveling earthquake signals to generate pseudoreflection seismograms that can be interpreted for subsurface structure. Processed pseudoreflection data, from microearthquakes recorded in the island of Hawaii, show consistent reflectivity patterns that are interpreted as near‐surface horizontal features. Forward modeling of the pseudoreflection data results in a P‐wave velocity model that shows reasonable agreement with the velocity model derived from a refraction study in the region. Usable signal‐to‐noise ratio is obtained down to 2 s. A shear‐wave velocity model was also generated by applying this technique to horizontal component data.


1998 ◽  
Vol 41 (4) ◽  
Author(s):  
G. Iannaccone ◽  
L. Improta ◽  
P. Capuano ◽  
A. Zollo ◽  
G. Biella ◽  
...  

This paper describes the results of a seismic refraction profile conducted in October 1992 in the Sannio region, Southern Italy, to obtain a detailed P-wave velocity model of the upper crust. The profile, 75 km long, extended parallel to the Apenninic chain in a region frequently damaged in historical time by strong earthquakes. Six shots were fired at five sites and recorded by a number of seismic stations ranging from 41 to 71 with a spacing of 1-2 km along the recording line. We used a two-dimensional raytracing technique to model travel times and amplitudes of first and second arrivals. The obtained P-wave velocity model has a shallow structure with strong lateral variations in the southern portion of the profile. Near surface sediments of the Tertiary age are characterized by seismic velocities in the 3.0-4.1 km/s range. In the northern part of the profile these deposits overlie a layer with a velocity of 4.8 km/s that has been interpreted as a Mesozoic sedimentary succession. A high velocity body, corresponding to the limestones of the Western Carbonate Platform with a velocity of 6 km/s, characterizes the southernmost part of the profile at shallow depths. At a depth of about 4 km the model becomes laterally homogeneous showing a continuous layer with a thickness in the 3-4 km range and a velocity of 6 km/s corresponding to the Meso-Cenozoic limestone succession of the Apulia Carbonate Platform. This platform appears to be layered, as indicated by an increase in seismic velocity from 6 to 6.7 km/s at depths in the 6-8 km range, that has been interpreted as a lithological transition from limestones to Triassic dolomites and anhydrites of the Burano formation. A lower P-wave velocity of about 5.0-5.5 km/s is hypothesized at the bottom of the Apulia Platform at depths ranging from 10 km down to 12.5 km; these low velocities could be related to Permo-Triassic siliciclastic deposits of the Verrucano sequence drilled at the bottom of the Apulia Platform in the Apulia Foreland.


2021 ◽  
Vol 13 (9) ◽  
pp. 1664
Author(s):  
Chiara Colombero ◽  
Alberto Godio ◽  
Denis Jongmans

Remote sensing techniques are leading methodologies for landslide characterization and monitoring. However, they may be limited in highly vegetated areas and do not allow for continuously tracking the evolution to failure in an early warning perspective. Alternative or complementary methods should be designed for potentially unstable sites in these environments. The results of a six-month passive seismic monitoring experiment on a prone-to-fall quartzite tower are here presented. Ambient seismic noise and microseismicity analyses were carried out on the continuously recorded seismic traces to characterize site stability and monitor its possible irreversible and reversible modifications driven by meteorological factors, in comparison with displacement measured on site. No irreversible modifications in the measured seismic parameters (i.e., natural resonance frequencies of the tower, seismic velocity changes, rupture-related microseismic signals) were detected in the monitored period, and no permanent displacement was observed at the tower top. Results highlighted, however, a strong temperature control on these parameters and unusual preferential vibration directions with respect to the literature case studies on nearly 2D rock columns, likely due the tower geometric constraints, as confirmed by 3D numerical modeling. A clear correlation with the tower displacement rate was found in the results, supporting the suitability of passive seismic monitoring systems for site characterization and early waning purposes.


Solid Earth ◽  
2016 ◽  
Vol 7 (2) ◽  
pp. 685-701 ◽  
Author(s):  
Beatriz Benjumea ◽  
Albert Macau ◽  
Anna Gabàs ◽  
Sara Figueras

Abstract. We combine geophysical well logging and passive seismic measurements to characterize the near-surface geology of an area located in Hontomin, Burgos (Spain). This area has some near-surface challenges for a geophysical study. The irregular topography is characterized by limestone outcrops and unconsolidated sediments areas. Additionally, the near-surface geology includes an upper layer of pure limestones overlying marly limestones and marls (Upper Cretaceous). These materials lie on top of Low Cretaceous siliciclastic sediments (sandstones, clays, gravels). In any case, a layer with reduced velocity is expected. The geophysical data sets used in this study include sonic and gamma-ray logs at two boreholes and passive seismic measurements: three arrays and 224 seismic stations for applying the horizontal-to-vertical amplitude spectra ratio method (H/V). Well-logging data define two significant changes in the P-wave-velocity log within the Upper Cretaceous layer and one more at the Upper to Lower Cretaceous contact. This technique has also been used for refining the geological interpretation. The passive seismic measurements provide a map of sediment thickness with a maximum of around 40 m and shear-wave velocity profiles from the array technique. A comparison between seismic velocity coming from well logging and array measurements defines the resolution limits of the passive seismic techniques and helps it to be interpreted. This study shows how these low-cost techniques can provide useful information about near-surface complexity that could be used for designing a geophysical field survey or for seismic processing steps such as statics or imaging.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. KS57-KS70 ◽  
Author(s):  
Evan Delaney ◽  
Laura Ermert ◽  
Korbinian Sager ◽  
Alexander Kritski ◽  
Sascha Bussat ◽  
...  

Heterogeneous, nonstationary noise sources can cause traveltime errors in noise-based seismic monitoring. The effect worsens with increasing temporal resolution. This may lead to costly false alarms in response to safety concerns and limit our confidence in the results when these systems are used for quasi-real-time monitoring of subsurface changes. Therefore, we have developed a new method to quantify and correct these traveltime errors to more accurately monitor subsurface conditions at daily or even hourly timescales. It is based on the inversion of noise correlation asymmetries for the time-dependent distribution of noise sources. The source model is then used to simulate time-dependent ambient noise correlations. The comparison with correlations computed for homogeneous noise sources yields traveltime errors that translate into spurious changes of the subsurface. The application of our method to data acquired at Statoil’s SWIM array, a permanent seismic installation at the Oseberg field, demonstrates that fluctuations in the noise source distribution may induce apparent velocity changes of 0.25% within one day. Such biases thereby likely mask realistic subsurface variations expected on these timescales. These errors are systematic, being primarily dependent on the noise source location and strength, and not on the interstation distance. Our method can then be used to correct for source-induced traveltime errors by subtracting these quantified biases in either the data or model space. It can furthermore establish a minimum threshold for which we may reliably attribute traveltime changes to actual subsurface changes, should we not correct for these errors. In addition to the aforementioned real data scenario, we apply our method to a synthetic case for a daily passive monitoring overburden feasibility study. Synthetics and field experiments validated the method’s theory and application.


Sign in / Sign up

Export Citation Format

Share Document