Asymptotics of the eigenmodes and stability of an elastic structure with general feedback matrix

2019 ◽  
Vol 84 (5) ◽  
pp. 873-911 ◽  
Author(s):  
Marianna A Shubov ◽  
Laszlo P Kindrat

Abstract The distribution of natural frequencies of the Euler–Bernoulli beam subject to fully non-dissipative boundary conditions is investigated. The beam is clamped at the left end and equipped with a 4-parameter ($\alpha ,\beta ,k_1,k_2$) linear boundary feedback law at the right end. The $2 \times 2$ boundary feedback matrix relates the control input (a vector of velocity and its spatial derivative at the right end), to the output (a vector of shear and moment at the right end). The initial boundary value problem describing the dynamics of the beam has been reduced to the first order in time evolution equation in the state Hilbert space equipped with the energy norm. The dynamics generator has a purely discrete spectrum (the vibrational modes) denoted by $\{\nu _n\}_{n\in \mathbb {Z}^{\prime}}$. The role of the control parameters is examined and the following results have been proven: (i) when $\beta \neq 0$, the set of vibrational modes is asymptotically close to the vertical line on the complex $\nu$-plane given by the equation $\Re \nu = \alpha + (1-k_1k_2)/\beta$; (ii) when $\beta = 0$ and the parameter $K = (1-k_1 k_2)/(k_1+k_2)$ is such that $\left |K\right |\neq 1$ then the following relations are valid: $\Re (\nu _n/n) = O\left (1\right )$ and $\Im (\nu _n/n^2) = O\left (1\right )$ as $\left |n\right |\to \infty$; (iii) when $\beta =0$, $|K| = 1$, and $\alpha = 0$, then the following relations are valid: $\Re (\nu _n/n^2) = O\left (1\right )$ and $\Im (\nu _n/n) = O\left (1\right )$ as $\left |n\right |\to \infty$; (iv) when $\beta =0$, $|K| = 1$, and $\alpha>0$, then the following relations are valid: $\Re (\nu _n/\ln \left |n\right |) = O\left (1\right )$ and $\Im (\nu _n/n^2) = O\left (1\right )$ as $\left |n\right |\to \infty$.

2021 ◽  
pp. 1-38
Author(s):  
Marianna A. Shubov

The distribution of natural frequencies of the Euler–Bernoulli beam resting on elastic foundation and subject to an axial force in the presence of several damping mechanisms is investigated. The damping mechanisms are: ( i ) an external or viscous damping with damping coefficient ( − a 0 ( x )), ( ii ) a damping proportional to the bending rate with the damping coefficient a 1 ( x ). The beam is clamped at the left end and equipped with a four-parameter (α, β, κ 1 , κ 2 ) linear boundary feedback law at the right end. The 2 × 2 boundary feedback matrix relates the control input (a vector of velocity and its spacial derivative at the right end) to the output (a vector of shear and moment at the right end). The initial boundary value problem describing the dynamics of the beam has been reduced to the first order in time evolution equation in the state Hilbert space of the system. The dynamics generator has a purely discrete spectrum (the vibrational modes). Explicit asymptotic formula for the eigenvalues as the number of an eigenvalue tends to infinity have been obtained. It is shown that the boundary control parameters and the distributed damping play different roles in the asymptotical formulas for the eigenvalues of the dynamics generator. Namely, the damping coefficient a 1 and the boundary controls κ 1 and κ 2 enter the leading asymptotical term explicitly, while damping coefficient a 0 appears in the lower order terms.


2021 ◽  
Vol 65 (3) ◽  
pp. 17-24
Author(s):  
Ravshan Ashurov ◽  
◽  
Oqila Muhiddinova

An initial-boundary value problem for a time-fractional subdiffusion equation with the Riemann-Liouville derivatives on N-dimensional torus is considered. Uniqueness and existence of the classical solution of the posed problem are proved by the classical Fourier method. Sufficient conditions for the initial function and for the right-hand side of the equation are indicated, under which the corresponding Fourier series converge absolutely and uniformly. It should be noted, that the condition on the initial function found in this paper is less restrictive than the analogous condition in the case of an equation with derivatives in the sense of Caputo.


2018 ◽  
Vol 18 (4) ◽  
pp. 350-361
Author(s):  
A. I. Sukhinov ◽  
V. V. Sidoryakina

Introduction. The paper is devoted to the study on the three-dimensional model of transport and suspension sedimentation in the coastal area due to changes in the bottom relief. The model considers the following processes: advective transfer caused by the aquatic medium motion, micro-turbulent diffusion, and gravity sedimentation of suspended particles, as well as the bottom geometry variation caused by the particle settling or bottom sediment rising. The work objective was to conduct an analytical study of the correctness of the initial-boundary value problem corresponding to the constructed model.Materials and Methods. The change in the bottom relief aids in solution to the initial-boundary value problem for a parabolic equation with the lowest derivatives in a domain whose geometry depends on the desired function of the solution, which in general leads to a nonlinear formulation of the problem. The model is linearized on the time grid due to the “freezing” of the bottom relief within a single step in time and the subsequent recalculation of the bottom surface function on the basis of the changed function of the suspension concentration, as well as a possible change in the velocity vector of the aquatic medium.Research Results. For the linearized problem, a quadratic functional is constructed, and the uniqueness of the solution to the corresponding initial boundary value problem is proved within the limits of an unspecified time step. On the basis of the quadratic functional transformation, we obtain a prior estimate of the solution norm in the functional space L2 as a function of the integral time estimates of the right side, and the initial condition. Thus, the stability of the solution to the initial problem from the change of the initial and boundary conditions, the right-hand side function, is established.Discussion and Conclusions. The model can be of value for predicting the spread of contaminants and changes in the bottom topography, both under an anthropogenic impact and due to the natural processes in the coastal area.


2017 ◽  
Vol 21 (6) ◽  
pp. 62-75
Author(s):  
A.R. Zaynullov

The inverse problem of finding initial conditions and the right-hand side had been studied for the inhomogeneous heat equation on the basis of formulas for the solution of the first initial-boundary value problem. A criterion of uniqueness of solution of the inverse problem for finding the initial condition was found with Spectral analysis. The right side of the heat equation is represented as a product of two functions, one of which depends on the spatial coordinates and the other from time. In one task, along with an unknown solution is sought factor on the right side, depending on the time, and in another - a factor that depends on the spatial coordinates. For these tasks, we prove uniqueness theorems, the existence and stability of solution.


2007 ◽  
Vol 12 (4) ◽  
pp. 469-482 ◽  
Author(s):  
Agnieszka Paradzinska ◽  
Piotr Matus

In the present paper, for the initial boundary value problem for the non‐homogeneous nonlinear transport equationthe basic principles for constructing difference schemes of any order of accuracy O(#GTM), M ≥ 1, on characteristic grids with the minimal stencil were introduced. To construct a difference scheme the Steklov averaging idea for the right‐hand sidewas used. The case of f(u) = λu2 was investigated in detail. A strict analysis of the order of approximation, stability, and convergence in nonlinear case was made. The performed numerical experiments justify theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Djumaklych Amanov ◽  
Allaberen Ashyralyev

The initial-boundary value problem for partial differential equations of higher-order involving the Caputo fractional derivative is studied. Theorems on existence and uniqueness of a solution and its continuous dependence on the initial data and on the right-hand side of the equation are established.


Author(s):  
Vladimir I. Uskov

The rigidity of a dynamical system described by a first-order differential equationwith an irreversible operator at the highest derivative is investigated. The system is perturbed by an operator addition of the order of the second power of a small parameter. Conditions under which the system is robust with respect to these disturbances are determined as well as conditions under which the influence of disturbances is significant. For this, the bifurcation equation is derived. It is used to set the type of boundary layer functions. As an example, we investigate the initial boundary value problem for a system of partial differential equations with a mixed second partial derivative which occurs in the study of the processes of sorption anddesorption of gases, drying processes, etc.


2003 ◽  
Vol 3 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Dejan Bojović

Abstract In this paper we consider the first initial boundary-value problem for the heat equation with variable coefficients in a domain (0; 1)x(0; 1)x(0; T]. We assume that the solution of the problem and the coefficients of the equation belong to the corresponding anisotropic Sobolev spaces. Convergence rate estimate which is consistent with the smoothness of the data is obtained.


Author(s):  
Shakirbai G. Kasimov ◽  
◽  
Mahkambek M. Babaev ◽  
◽  

The paper studies a problem with initial functions and boundary conditions for partial differential partial equations of fractional order in partial derivatives with a delayed time argument, with degree Laplace operators with spatial variables and nonlocal boundary conditions in Sobolev classes. The solution of the initial boundary-value problem is constructed as the series’ sum in the eigenfunction system of the multidimensional spectral problem. The eigenvalues are found for the spectral problem and the corresponding system of eigenfunctions is constructed. It is shown that the system of eigenfunctions is complete and forms a Riesz basis in the Sobolev subspace. Based on the completeness of the eigenfunctions system the uniqueness theorem for solving the problem is proved. In the Sobolev subspaces the existence of a regular solution to the stated initial-boundary problem is proved.


Sign in / Sign up

Export Citation Format

Share Document