Detecting Large Simple Rational Hecke Modules for Γ0(N) via Congruences

2018 ◽  
Vol 2020 (19) ◽  
pp. 6149-6168
Author(s):  
Michael Lipnowski ◽  
George J Schaeffer

Abstract We describe a novel method for bounding the dimension $d$ of the largest simple Hecke submodule of $S_{2}(\Gamma _{0}(N);\mathbb{Q})$ from below. Such bounds are of interest because of their relevance to the structure of $J_{0}(N)$, for instance. In contrast with previous results of this kind, our bound does not rely on the equidistribution of Hecke eigenvalues. Instead, it is obtained via a Hecke-compatible congruence between the target space and a space of modular forms whose Hecke eigenvalues are easily controlled. We prove conditional bounds, the strongest of which is $d\gg _{\epsilon } N^{1/2-\epsilon }$ over a large set of primes $N$, contingent on Soundararajan’s heuristics for the class number problem and Artin’s conjecture on primitive roots. For prime levels $N\equiv 7\mod 8,$ our method yields an unconditional bound of $d\geq \log _{2}\log _{2}(\frac{N}{8})$, which is larger than the known bound of $d\gg \sqrt{\log \log N}$ due to Murty–Sinha and Royer. A stronger unconditional bound of $d\gg \log N$ can be obtained in more specialized (but infinitely many) cases. We also propose a number of Maeda-style conjectures based on our data, and we outline a possible congruence-based approach toward the conjectural Hecke simplicity of $S_{k}(\textrm{SL}_{2}(\mathbb{Z});\mathbb{Q})$.

2012 ◽  
Vol 08 (03) ◽  
pp. 613-629 ◽  
Author(s):  
ADAM TYLER FELIX

Let a be a natural number different from 0. In 1963, Linnik proved the following unconditional result about the Titchmarsh divisor problem [Formula: see text] where c is a constant dependent on a. Titchmarsh proved the above result assuming GRH for Dirichlet L-functions in 1931. We establish the following asymptotic relation: [Formula: see text] where Ck is a constant dependent on k and a, and the implied constant is dependent on k. We also apply it a question related to Artin's conjecture for primitive roots.


1995 ◽  
Vol 38 (2) ◽  
pp. 167-173 ◽  
Author(s):  
David A. Clark ◽  
Masato Kuwata

AbstractLet k = Fq be a finite field of characteristic p with q elements and let K be a function field of one variable over k. Consider an elliptic curve E defined over K. We determine how often the reduction of this elliptic curve to a prime ideal is cyclic. This is done by generalizing a result of Bilharz to a more general form of Artin's primitive roots problem formulated by R. Murty.


1979 ◽  
Vol 86 (3) ◽  
pp. 200-202
Author(s):  
Roy W. Ryden
Keyword(s):  

2010 ◽  
Vol 89 (3) ◽  
pp. 393-405 ◽  
Author(s):  
MARTIN RAUM

AbstractWe state and verify up to weight 172 a conjecture on the existence of a certain generating set for spaces of classical Siegel modular forms. This conjecture is particularly useful for calculations involving Fourier expansions. Using this generating set, we verify the Böcherer conjecture for nonrational eigenforms and discriminants with class number greater than one. As a further application we verify another conjecture for weights up to 150 and investigate an analog of the Victor–Miller basis. Additionally, we describe some arithmetic properties of the basis we found.


2014 ◽  
Vol 215 ◽  
pp. 1-66
Author(s):  
Yifan Yang

AbstractIn this paper, we prove that, for an integerrwith (r, 6) = 1 and 0< r <24 and a nonnegative even integers, the setis isomorphic toas Hecke modules under the Shimura correspondence. HereMs(1) denotes the space of modular forms of weightis the space of newforms of weight 2kon Γ0(6) that are eigenfunctions with eigenvalues€2and€3for Atkin-Lehner involutionsW2andW3, respectively, and the notation ⊕(12/.) means the twist by the quadratic character (12/-). There is also an analogous result for the cases (r, 6) = 3.


1991 ◽  
Vol 123 ◽  
pp. 141-151 ◽  
Author(s):  
Franz Halter-Koch

The binary quadratic diophantine equationis of interest in the class number problem for real quadratic number fields and was studied in recent years by several authors (see [4], [5], [2] and the literature cited there).


Sign in / Sign up

Export Citation Format

Share Document