siegel modular forms
Recently Published Documents


TOTAL DOCUMENTS

316
(FIVE YEARS 45)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Vol 15 (8) ◽  
pp. 2089-2122
Author(s):  
Shouhei Ma

2021 ◽  
pp. 1-22
Author(s):  
NEIL DUMMIGAN

Abstract Following Ryan and Tornaría, we prove that moduli of congruences of Hecke eigenvalues, between Saito–Kurokawa lifts and non-lifts (certain Siegel modular forms of genus 2), occur (squared) in denominators of central spinor L-values (divided by twists) for the non-lifts. This is conditional on Böcherer’s conjecture and its analogues and is viewed in the context of recent work of Furusawa, Morimoto and others. It requires a congruence of Fourier coefficients, which follows from a uniqueness assumption or can be proved in examples. We explain these factors in denominators via a close examination of the Bloch–Kato conjecture.


2021 ◽  
Vol 91 (333) ◽  
pp. 401-449
Author(s):  
Markus Kirschmer ◽  
Fabien Narbonne ◽  
Christophe Ritzenthaler ◽  
Damien Robert

Let E E be an ordinary elliptic curve over a finite field and g g be a positive integer. Under some technical assumptions, we give an algorithm to span the isomorphism classes of principally polarized abelian varieties in the isogeny class of E g E^g . The varieties are first described as hermitian lattices over (not necessarily maximal) quadratic orders and then geometrically in terms of their algebraic theta null point. We also show how to algebraically compute Siegel modular forms of even weight given as polynomials in the theta constants by a careful choice of an affine lift of the theta null point. We then use these results to give an algebraic computation of Serre’s obstruction for principally polarized abelian threefolds isogenous to E 3 E^3 and of the Igusa modular form in dimension 4 4 . We illustrate our algorithms with examples of curves with many rational points over finite fields.


2021 ◽  
Vol 7 (3) ◽  
Author(s):  
Tobias Berger ◽  
Krzysztof Klosin

AbstractWe prove (under certain assumptions) the irreducibility of the limit $$\sigma _2$$ σ 2 of a sequence of irreducible essentially self-dual Galois representations $$\sigma _k: G_{{\mathbf {Q}}} \rightarrow {{\,\mathrm{GL}\,}}_4(\overline{{\mathbf {Q}}}_p)$$ σ k : G Q → GL 4 ( Q ¯ p ) (as k approaches 2 in a p-adic sense) which mod p reduce (after semi-simplifying) to $$1 \oplus \rho \oplus \chi $$ 1 ⊕ ρ ⊕ χ with $$\rho $$ ρ irreducible, two-dimensional of determinant $$\chi $$ χ , where $$\chi $$ χ is the mod p cyclotomic character. More precisely, we assume that $$\sigma _k$$ σ k are crystalline (with a particular choice of weights) and Siegel-ordinary at p. Such representations arise in the study of p-adic families of Siegel modular forms and properties of their limits as $$k\rightarrow 2$$ k → 2 appear to be important in the context of the Paramodular Conjecture. The result is deduced from the finiteness of two Selmer groups whose order is controlled by p-adic L-values of an elliptic modular form (giving rise to $$\rho $$ ρ ) which we assume are non-zero.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Brandon Williams

Abstract We apply differential operators to modular forms on orthogonal groups O ⁢ ( 2 , ℓ ) {\mathrm{O}(2,\ell)} to construct infinite families of modular forms on special cycles. These operators generalize the quasi-pullback. The subspaces of theta lifts are preserved; in particular, the higher pullbacks of the lift of a (lattice-index) Jacobi form ϕ are theta lifts of partial development coefficients of ϕ. For certain lattices of signature ( 2 , 2 ) {(2,2)} and ( 2 , 3 ) {(2,3)} , for which there are interpretations as Hilbert–Siegel modular forms, we observe that the higher pullbacks coincide with differential operators introduced by Cohen and Ibukiyama.


Author(s):  
Siegfried Böcherer ◽  
Soumya Das

Abstract We prove that if F is a nonzero (possibly noncuspidal) vector-valued Siegel modular form of any degree, then it has infinitely many nonzero Fourier coefficients which are indexed by half-integral matrices having odd, square-free (and thus fundamental) discriminant. The proof uses an induction argument in the setting of vector-valued modular forms. Further, as an application of a variant of our result and complementing the work of A. Pollack, we show how to obtain an unconditional proof of the functional equation of the spinor L-function of a holomorphic cuspidal Siegel eigenform of degree $3$ and level $1$ .


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Suresh Govindarajan ◽  
Sutapa Samanta

Abstract A second-quantized version of Mathieu moonshine leads to product formulae for functions that are potentially genus-two Siegel Modular Forms analogous to the Igusa Cusp Form. The modularity of these functions do not follow in an obvious manner. For some conjugacy classes, but not all, they match known modular forms. In this paper, we express the product formulae for all conjugacy classes of M24 in terms of products of standard modular forms. This provides a new proof of their modularity.


Sign in / Sign up

Export Citation Format

Share Document