The Wrong Cure: Financial Incentives for Unimpressive New Antibiotics

Author(s):  
Michael S Sinha ◽  
John H Powers ◽  
Aaron S Kesselheim

Though antimicrobial resistance is a public health concern, the basis of approval for many new antibiotics does not distinguish them from older products. We suggest a more tailored incentive structure for antibiotic development, focused on clinical benefit and patient outcomes.

2004 ◽  
Vol 8 (32) ◽  
Author(s):  

Resistance to antimicrobials has become a major public health concern, and it has been shown that there is a relationship, albeit complex, between antimicrobial resistance and consumption


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Pouya Reshadi ◽  
Fatemeh Heydari ◽  
Reza Ghanbarpour ◽  
Mahboube Bagheri ◽  
Maziar Jajarmi ◽  
...  

Abstract Background Transmission of antimicrobial resistant and virulent Escherichia coli (E. coli) from animal to human has been considered as a public health concern. This study aimed to determine the phylogenetic background and prevalence of diarrheagenic E. coli and antimicrobial resistance in healthy riding-horses in Iran. In this research, the genes related to six main pathotypes of E. coli were screened. Also, genotypic and phenotypic antimicrobial resistance against commonly used antibiotics were studied, then phylo-grouping was performed on all the isolates. Results Out of 65 analyzed isolates, 29.23 % (n = 19) were determined as STEC and 6.15 % (n = 4) as potential EPEC. The most prevalent antimicrobial resistance phenotypes were against amoxicillin/clavulanic acid (46.2 %) and ceftriaxone (38.5 %). blaTEM was the most detected resistance gene (98.4 %) among the isolates and 26.15 % of the E. coli isolates were determined as multi-drug resistant (MDR). Three phylo-types including B1 (76.92 %), A (13.85 %) and D (3.08 %) were detected among the isolates. Conclusions Due to the close interaction of horses and humans, these findings would place emphasis on the pathogenic and zoonotic potential of the equine strains and may help to design antimicrobial resistance stewardship programs to control the dissemination of virulent and multi-drug resistant E. coli strains in the community.


2019 ◽  
Author(s):  
Elizabeth Muligisa Muonga ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Geoffrey Kwenda ◽  
Bernard Hang'ombe ◽  
...  

Abstract Background Antimicrobial resistance (AMR) of foodborne pathogens is of public health concern, especially in developing countries like Zambia. This study was undertaken to determine the resistance profiles of Escherichia coli ( E. coli ) and Salmonella isolated from dressed broiler chickens purchased from open markets and supermarkets in Zambia.Results A total of 189 E. coli and five Salmonella isolates were isolated. Identification and confirmation of the isolates was done using Analytical Profile Index (API 20E) (Biomerieux ® ) and 16S rRNA sequencing. Antimicrobial susceptibility tests (AST) were performed using the Kirby Bauer disk diffusion technique using a panel of 10 different antibiotics and multiplex PCR was used to determine the presence of three target genes encoding for resistance: tetA, Sul1 and CTXM. AST results were entered and analyzed in WHONET 2018 software. A total of 189 E. coli and five Salmonella isolates were identified. Among the E. coli isolates, Tetracycline recorded the highest resistance of 79.4%, followed by Ampicillin 51.9%, Trimethoprim/Sulfamethoxazole 49.7%, Nalidixic Acid 24.3%, Chloramphenicol 16.4%, Cefotaxime 16.4%, Ciprofloxacin 10.1%, Colistin 7.4%, Amoxicillin/Clavulanic acid 6.9%, and Imipenem 1.1%. Two of the five Salmonella isolates were resistant to at least one antibiotic. Forty- seven (45.2%) of the isolates possessed at least one of the targeted resistance genes.Conclusion This study has demonstrated the presence of AMR E. coli and Salmonella on raw broiler chickens from both open markets and supermarkets. Such resistance is of public health concern and measures need to be put in place to regulate the use of these antimicrobials in poultry production.


2011 ◽  
Vol 56 (1) ◽  
pp. 555-558 ◽  
Author(s):  
Sandra K. Urich ◽  
Linda Chalcraft ◽  
Martin E. Schriefer ◽  
Brook M. Yockey ◽  
Jeannine M. Petersen

ABSTRACTYersinia pestisis the causative agent of plague, a fulminant disease that is often fatal without antimicrobial treatment. Plasmid (IncA/C)-mediated multidrug resistance inY. pestiswas reported in 1995 in Madagascar and has generated considerable public health concern, most recently because of the identification of IncA/C multidrug-resistant plasmids in other zoonotic pathogens. Here, we demonstrate no resistance in 392Y. pestisisolates from 17 countries to eight antimicrobials used for treatment or prophylaxis of plague.


2020 ◽  
Author(s):  
Elizabeth Muligisa Muonga ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Geoffrey Kwenda ◽  
Bernard Hang'ombe ◽  
...  

Abstract BackgroundAntimicrobial resistance (AMR) of foodborne pathogens is of public health concern, especially in developing countries such as Zambia. This study was undertaken to determine the antimicrobial resistance profiles of Escherichia coli ( E. coli ) and Salmonella isolated from raw retail broiler chicken carcasses purchased from open and supermarkets in Zambia.ResultsA total of 189 E. coli and five Salmonella isolates were isolated. Identification and confirmation of the isolates were done using Analytical Profile Index (API 20E) (Biomerieux ® ) and 16S rRNA sequencing. Antimicrobial susceptibility tests (AST) were performed using the Kirby Bauer disk diffusion technique using a panel of 10 antibiotics. Multiplex PCR was used to determine the presence of three target genes encoding for resistance: tet A, Sul 1 and bla CTX-M . WHONET 2018 software was used to analyse AST results. The E. coli isolates were mostly resistant to tetracycline (79.4%), ampicillin (51.9%), and trimethoprim/sulfamethoxazole (49.7%). Two of the five Salmonella isolates were resistant to at least one antibiotic. Forty- seven (45.2%) of the 104 isolates that were screened for the presence of the resistant genes possessed at least one of the targeted resistance genes.ConclusionThis study has demonstrated the presence of AMR E. coli and Salmonella on raw retail broiler chicken carcasses from open and supermarkets, which is of public health concern.


2020 ◽  
Author(s):  
Elizabeth Muligisa Muonga ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Geoffrey Kwenda ◽  
Bernard Hang'ombe ◽  
...  

Abstract Background Antimicrobial resistance (AMR) of foodborne pathogens is of public health concern, especially in developing countries such as Zambia. This study was undertaken to determine the antimicrobial resistance profiles of Escherichia coli (E. coli) and Salmonella isolated from raw retail broiler chicken carcasses purchased from open and supermarkets in Zambia.Results A total of 189 E. coli and five Salmonella isolates were isolated. Identification and confirmation of the isolates were done using Analytical Profile Index (API 20E) (Biomerieux®) and 16S rRNA sequencing. Antimicrobial susceptibility tests (AST) were performed using the Kirby Bauer disk diffusion technique using a panel of 10 antibiotics. Multiplex PCR was used to determine the presence of three target genes encoding for resistance: tetA, Sul1 and blaCTX-M. WHONET 2018 software was used to analyse AST results. The E. coli isolates were mostly resistant to tetracycline (79.4%), ampicillin (51.9%), and trimethoprim/sulfamethoxazole (49.7%). Two of the five Salmonella isolates were resistant to at least one antibiotic. Forty- seven (45.2%) of the 104 isolates that were screened for the presence of the resistant genes possessed at least one of the targeted resistance genes.Conclusion This study has demonstrated the presence of AMR E. coli and Salmonella on raw retail broiler chicken carcasses from open and supermarkets, which is of public health concern.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 780
Author(s):  
Lorena Varriale ◽  
Ludovico Dipineto ◽  
Tamara Pasqualina Russo ◽  
Luca Borrelli ◽  
Violante Romano ◽  
...  

Antimicrobial resistance is a public health concern worldwide and it is largely attributed to the horizontal exchange of transferable genetic elements such as plasmids carrying integrons. Several studies have been conducted on livestock showing a correlation between the systemic use of antibiotics and the onset of resistant bacterial strains. In contrast, although companion birds are historically considered as an important reservoir for human health threats, little information on the antimicrobial resistance in these species is available in the literature. Therefore, this study was aimed at evaluating the antimicrobial resistance of Escherichia coli and Pseudomonasaeruginosa isolated from 755 companion birds. Cloacal samples were processed for E. coli and P. aeruginosa isolation and then all isolates were submitted to antimicrobial susceptibility testing. P. aeruginosa was isolated in 59/755 (7.8%) samples, whereas E. coli was isolated in 231/755 (30.7%) samples. Most strains showed multidrug resistance. This study highlights that companion birds may act as substantial reservoirs carrying antimicrobial resistance genes which could transfer directly or indirectly to humans and animals, and from a One Health perspective this risk should not be underestimated.


Foods ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 275 ◽  
Author(s):  
Myrna Cadena ◽  
Todd Kelman ◽  
Maria L. Marco ◽  
Maurice Pitesky

Foodborne pathogens such as Salmonella that survive cleaning and disinfection during poultry processing are a public health concern because pathogens that survive disinfectants have greater potential to exhibit resistance to antibiotics and disinfectants after their initial disinfectant challenge. While the mechanisms conferring antimicrobial resistance (AMR) after exposure to disinfectants is complex, understanding the effects of disinfectants on Salmonella in both their planktonic and biofilm states is becoming increasingly important, as AMR and disinfectant tolerant bacteria are becoming more prevalent in the food chain. This review examines the modes of action of various types of disinfectants commonly used during poultry processing (quaternary ammonium, organic acids, chlorine, alkaline detergents) and the mechanisms that may confer tolerance to disinfectants and cross-protection to antibiotics. The goal of this review article is to characterize the AMR profiles of Salmonella in both their planktonic and biofilm state that have been challenged with hexadecylpyridinium chloride (HDP), peracetic acid (PAA), sodium hypochlorite (SHY) and trisodium phosphate (TSP) in order to understand the risk of these disinfectants inducing AMR in surviving bacteria that may enter the food chain.


2012 ◽  
Vol 78 (6) ◽  
pp. 2043-2045 ◽  
Author(s):  
Kinga Wieczorek ◽  
Katarzyna Dmowska ◽  
Jacek Osek

ABSTRACTListeria monocytogenesisolates from bovine hides and carcasses (n= 812) were mainly of serogroup 1/2a. All strains were positive for internalin genes. Several isolates were resistant to oxacillin (72.2%) or clindamycin (37.0%). These findings indicate thatL. monocytogenesof beef origin can be considered a public health concern.


Sign in / Sign up

Export Citation Format

Share Document