Patterns of virus growth across the diversity of life

2021 ◽  
Author(s):  
Tianyi Jin ◽  
John Yin

Abstract Although viruses in their natural habitats add up to less than 10% of the biomass, they contribute more than 90% of the genome sequences [1]. These viral sequences or ‘viromes’ encode viruses that populate the Earth’s oceans [2, 3] and terrestrial environments [4, 5], where their infections impact life across diverse ecological niches and scales [6, 7], including humans [8–10]. Most viruses have yet to be isolated and cultured [11–13], and surprisingly few efforts have explored what analysis of available data might reveal about their nature. Here, we compiled and analyzed seven decades of one-step growth and other data for viruses from six major families, including their infections of archaeal, bacterial and eukaryotic hosts [14–191]. We found that the use of host cell biomass for virus production was highest for archaea at 10%, followed by bacteria at 1% and eukarya at 0.01%, highlighting the degree to which viruses of archaea and bacteria exploit their host cells. For individual host cells, the yield of virus progeny spanned a relatively narrow range (10–1000 infectious particles per cell) compared with the million-fold difference in size between the smallest and largest cells. Furthermore, healthy and infected host cells were remarkably similar in the time they needed to multiply themselves or their virus progeny. Specifically, the doubling time of healthy cells and the delay time for virus release from infected cells were not only correlated (r = 0.71, p < 10−10, n = 101); they also spanned the same range from tens of minutes to about a week. These results have implications for better understanding the growth, spread and persistence of viruses in complex natural habitats that abound with diverse hosts, including humans and their associated microbes.

Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 601
Author(s):  
Yu-Jing Zeng ◽  
Min-Kung Hsu ◽  
Chiao-An Tsai ◽  
Chun-Yen Chu ◽  
Hsing-Chieh Wu ◽  
...  

During industrial-scale production of viruses for vaccine manufacturing, anti-viral response of host cells can dampen maximal viral antigen yield. In addition to interferon responses, many other cellular responses, such as the AMPK signaling pathway or senescence-like response may inhibit or slow down virus amplification in the cell culture system. In this study, we first performed a Gene Set Enrichment Analysis of the whole-genome mRNA transcriptome and found a senescence-like cellular response in BHK-21 cells when infected with bovine ephemeral fever virus (BEFV). To demonstrate that this senescence-like state may reduce virus growth, BHK-21 subclones showing varying degrees of a senescence-like state were infected with BEFV. The results showed that the BHK-21 subclones showing high senescence staining could inhibit BEFV replication while low senescence-staining subclones are permissive to virus replication. Using a different approach, a senescence-like state was induced in BHK-21 using a small molecule, camptothecin (CPT), and BEFV susceptibility were examined. The results showed that CPT-treated BHK-21 is more resistant to virus infection. Overall, these results indicate that a senescence-like response may be at play in BHK-21 upon virus infection. Furthermore, cell clone selection and modulating treatments using small molecules may be tools in countering anti-viral responses.


2008 ◽  
Vol 89 (8) ◽  
pp. 1873-1880 ◽  
Author(s):  
Qian Yu ◽  
Tiehao Lin ◽  
Guozhong Feng ◽  
Kai Yang ◽  
Yi Pang

A homology search of a public database revealed that Spodoptera litura nucleopolyhedrovirus (SpltNPV) possesses two putative, antiapoptotic genes, p49 and inhibitor of apoptosis 4 (iap4), but their function has not been investigated in its native host cells. In the present study, we used RNA interference (RNAi) to silence the expression of Splt-iap4 and Splt-p49, independently or together, to determine their roles during the SpltNPV life cycle. RT-PCR analysis and Western blot analysis showed the target gene expression had been knocked out in the SpltNPV-infected SpLi-221 cells after treatment with Splt-p49 or Splt-iap4 double-stranded RNA (dsRNA), respectively, confirming that the two genes were effectively silenced. In SpltNPV-infected cells treated with Splt-p49 dsRNA, apoptosis was observed beginning at 14 h, and almost all cells had undergone apoptosis by 48 h. In contrast, budded virus production and polyhedra formation progressed normally in infected cells treated with Splt-iap4 dsRNA. Cell viability analysis showed that Splt-IAP4 had no synergistic effect on the inhibition of apoptosis of SpLi-221 cells induced by SpltNPV infection. Interestingly, after Splt-iap4 dsRNA treatment, cells did not congregate like those infected with SpltNPV in the early infection phase, implying an unknown role of baculovirus iap4. Our results determine that Splt-p49 is necessary to prevent apoptosis; however, Splt-iap4 has no antiapoptotic function during SpltNPV infection.


Author(s):  
Odilon D. Kaboré ◽  
Sylvain Godreuil ◽  
Michel Drancourt

Traditionally recognized as environmental bacteria, Planctomycetes have just been linked recently to human pathology as opportunistic pathogens, arousing a great interest for clinical microbiologists. However, the lack of appropriate culture media limits our future investigations as no Planctomycetes have ever been isolated from patients’ specimens despite several attempts. Several Planctomycetes have no cultivable members and are only recognized by 16S rRNA gene sequence detection and analysis. The cultured representatives are slow-growing fastidious bacteria and mostly difficult to culture on synthetic media. Accordingly, the provision of environmental and nutritional conditions like those existing in the natural habitat where yet uncultured/refractory bacteria can be detected might be an option for their potential isolation. Hence, we systematically reviewed the various natural habitats of Planctomycetes, to review their nutritional requirements, the physicochemical characteristics of their natural ecological niches, current methods of cultivation of the Planctomycetes and gaps, from a perspective of collecting data in order to optimize conditions and the protocols of cultivation of these fastidious bacteria. Planctomycetes are widespread in freshwater, seawater, and terrestrial environments, essentially associated to particles or organisms like macroalgae, marine sponges, and lichens, depending on the species and metabolizable polysaccharides by their sulfatases. Most Planctomycetes grow in nutrient-poor oligotrophic environments with pH ranging from 3.4 to 11, but a few strains can also grow in quite nutrient rich media like M600/M14. Also, a seasonality variation of abundance is observed, and bloom occurs in summer-early autumn, correlating with the strong growth of algae in the marine environments. Most Planctomycetes are mesophilic, but with a few Planctomycetes being thermophilic (50°C to 60°C). Commonly added nutrients are N-acetyl-glucosamine, yeast-extracts, peptone, and some oligo and macro-elements. A biphasic host-associated extract (macroalgae, sponge extract) conjugated with a diluted basal medium should provide favorable results for the success of isolation in pure culture.


1998 ◽  
Vol 1404 (3) ◽  
pp. 338-352 ◽  
Author(s):  
Birgitta J. Rasmusson ◽  
Thomas D. Flanagan ◽  
Salvatore J. Turco ◽  
Richard M. Epand ◽  
Nils O. Petersen

Microbiology ◽  
2000 ◽  
Vol 81 (7) ◽  
pp. 1881-1888 ◽  
Author(s):  
L. M. Kasman ◽  
L. E. Volkman

Autographa californica M nucleopolyhedrovirus (AcMNPV) is the prototypical member of the Nucleopolyhedrosis genus of the Baculoviridae, a family of large, double-stranded DNA viruses that are highly diverse. Nucleocapsid morphogenesis of AcMNPV and others in the Nucleopolyhedrovirus genus takes place within the nuclei of infected host cells. Previously, we showed that filamentous actin (F-actin) is essential for this process to occur in AcMNPV-infected cells, an unprecedented finding for a DNA virus that replicates within the nucleus. Because of the fundamental importance of this requirement to our understanding of virus–host interactions, and because of the diversity of viruses included within the Nucleopolyhedrovirus genus, we were compelled to determine whether the replication of other nucleopolyhedroviruses was also F-actin dependent. We report here that progeny virus production of six other lepidopteran nucleopolyhedroviruses, representing both phylogenetic groups I and II within the genus, is also F-actin dependent. The six viruses studied (Spodoptera frugiperda MNPV, Bombyx mori NPV, Orgyia pseudotsugata MNPV, Lymantria dispar MNPV, Anticarsia gemmatalis MNPV and Helicoverpa zea SNPV) were unable to produce progeny in the presence of either cytochalasin D or latrunculin A, two actin-binding agents that interfere with F-actin-dependent processes but differ in their modes of action. F-actin-dependent progeny morphogenesis, therefore, appears to be a characteristic common among viruses in this genus that have lepidopteran hosts.


2006 ◽  
Vol 81 (3) ◽  
pp. 1297-1304 ◽  
Author(s):  
Alexis H. Broquet ◽  
Christelle Lenoir ◽  
Agnès Gardet ◽  
Catherine Sapin ◽  
Serge Chwetzoff ◽  
...  

ABSTRACT Previous studies demonstrated that the induction of the heat shock protein Hsp70 in response to viral infection is highly specific and differs from one cell to another and for a given virus type. However, no clear consensus exists so far to explain the likely reasons for Hsp70 induction within host cells during viral infection. We show here that upon rotavirus infection of intestinal cells, Hsp70 is indeed rapidly, specifically, and transiently induced. Using small interfering RNA-Hsp70-transfected Caco-2 cells, we observed that Hsp70 silencing was associated with an increased virus protein level and enhanced progeny virus production. Upon Hsp70 silencing, we observed that the ubiquitination of the main rotavirus structural proteins was strongly reduced. In addition, the use of proteasome inhibitors in infected Caco-2 cells was shown to induce an accumulation of structural viral proteins. Together, these results are consistent with a role of Hsp70 in the control of the bioavailability of viral proteins within cells for virus morphogenesis.


1968 ◽  
Vol 66 (2) ◽  
pp. 191-205 ◽  
Author(s):  
Derrick Baxby ◽  
C. J. M. Rondle

SUMMARYThe growth of vaccinia and cowpox in RK13 cells was studied by measurement of infective virus production, gel diffusion and haemagglutination. The effects of virus growth inhibitors on the normal course of infection were then followed. Although the results with the two viruses were essentially similar some differences were detected between them. Inhibitors of DNA synthesis permitted production of many virus-specific soluble antigens. Compounds which inhibit DNA function and compounds that affected energy-yielding reactions had more dramatic effects. The different results obtained suggested that the synthesis of virus-specific materials was sequential and a possible part of the sequence is suggested.


2005 ◽  
Vol 79 (6) ◽  
pp. 3595-3605 ◽  
Author(s):  
Matthew F. McCown ◽  
Andrew Pekosz

ABSTRACT The M2 integral membrane protein encoded by influenza A virus possesses an ion channel activity that is required for efficient virus entry into host cells. The role of the M2 protein cytoplasmic tail in virus replication was examined by generating influenza A viruses encoding M2 proteins with truncated C termini. Deletion of 28 amino acids (M2Stop70) resulted in a virus that produced fourfold-fewer particles but >1,000-fold-fewer infectious particles than wild-type virus. Expression of the full-length M2 protein in trans restored the replication of the M2 truncated virus. Although the M2Stop70 virus particles were similar to wild-type virus in morphology, the M2Stop70 virions contained reduced amounts of viral nucleoprotein and genomic RNA, indicating a defect in vRNP packaging. The data presented indicate the M2 cytoplasmic tail plays a role in infectious virus production by coordinating the efficient packaging of genome segments into influenza virus particles.


1996 ◽  
Vol 8 (2) ◽  
pp. 172-180 ◽  
Author(s):  
Joseph M. Groff ◽  
Scott E. LaPatra ◽  
Robert J. Munn ◽  
Mark L. Anderson ◽  
Bennie I. Osburn

A mild to moderate branchial epitheliocystis infection was diagnosed in subyearling (11 months old, 250–300 g) white sturgeon ( Acipenser transmontanus) from a private culture facility with a 4–8% mortality in the population. Infected branchial epithelial cells contained the coccoid to coccobacillary epitheliocystis organisms, which appeared as cytoplasmic inclusions composed of a fine, homogeneous, dense, basophilic, granular material. The infected cells were variably enlarged with spherical to oval profiles and were randomly distributed throughout the branchial epithelium. The cytoplasmic inclusions stained positive with Macchiavello stain but negative with Brown and Brenn, periodic acid-Schiff, and Gimenez stains. Expression of chlamydial antigen was demonstrated within the cytoplasmic inclusions using a standard peroxidase-antiperoxidase immunohistochemical technique. Three stages of coordinated intracellular development were recognized by electron microscopy. The reticulate bodies were oval to spherical and 0.4–0.8 × 0.5–1.4 μm but often exhibited a pleomorphic and convoluted appearance because of variable membrane invaginations and evaginations suggestive of uneven fission and budding. Separate host cells contained intermediate bodies that were spherical to oval and 0.2–0.4 × 0.3–0.6 μm although often observed in the process of apparent uneven division. The presence of a cap or plaque composed of hexagonally arrayed fibrillar surface projections was initially recognized in this stage. A homogeneous population of 0.3–0.4 μmoval elementary bodies were observed separately in individual host cells. This developmental stage had a single, dense, compact, eccentrically located cytoplasmic condensation that occurred opposite to the location of the cap of hexagonally arrayed fibrillar surface projections. Morphologic characteristics of the epitheliocystis organism in these white sturgeon were similar to those previously described in other teleosts and expands the species catalogue of epitheliocystis infection. Furthermore, the ultrastructural similarities to the chlamydiae and the immunohistochemical detection of chlamydial antigen provides further evidence that the epitheliocystis agent is related to members of the Chlamydiales. Although the infection was considered mild to moderate and could not be definitively attributed to the mortality in this population, the potential adverse impact of epitheliocystis infection on sturgeon culture should be considered especially in intensive fish culture operations.


Sign in / Sign up

Export Citation Format

Share Document