scholarly journals Superantigen responses and co-stimulation: CD28 and CTLA-4 have opposing effects on T cell expansion in vitro and in vivo

1996 ◽  
Vol 8 (4) ◽  
pp. 519-523 ◽  
Author(s):  
Matthew F. Krummel ◽  
Timothy J. Sullivan ◽  
James P. Allison
Blood ◽  
2008 ◽  
Vol 112 (5) ◽  
pp. 1759-1766 ◽  
Author(s):  
Peter N. Lalli ◽  
Michael G. Strainic ◽  
Min Yang ◽  
Feng Lin ◽  
M. Edward Medof ◽  
...  

Abstract Our recent studies have shown that immune cell–produced complement provides costimulatory and survival signals to naive CD4+ T cells. Whether these signals are similarly required during effector cell expansion and what molecular pathways link locally produced complement to T-cell survival were not clarified. To address this, we stimulated monoclonal and polyclonal T cells in vitro and in vivo with antigen-presenting cells (APCs) deficient in the complement regulatory protein, decay accelerating factor (DAF), and/or the complement component C3. We found that T-cell expansion induced by DAF-deficient APCs was augmented with diminished T-cell apoptosis, whereas T-cell expansion induced by C3−/− APCs was reduced because of enhanced T-cell apoptosis. These effects were traced to locally produced C5a, which through binding to T cell–expressed C5aR, enhanced expression of Bcl-2 and prevented Fas up-regulation. The results show that C5aR signal transduction in T cells is important to allow optimal T-cell expansion, as well as to maintain naive cell viability, and does so by suppressing programmed cell death.


2005 ◽  
Vol 201 (1) ◽  
pp. 139-148 ◽  
Author(s):  
Rong Zeng ◽  
Rosanne Spolski ◽  
Steven E. Finkelstein ◽  
SangKon Oh ◽  
Panu E. Kovanen ◽  
...  

Interleukin (IL)-21 is the most recently recognized of the cytokines that share the common cytokine receptor γ chain (γc), which is mutated in humans with X-linked severe combined immunodeficiency. We now report that IL-21 synergistically acts with IL-15 to potently promote the proliferation of both memory (CD44high) and naive (CD44low) phenotype CD8+ T cells and augment interferon-γ production in vitro. IL-21 also cooperated, albeit more weakly, with IL-7, but not with IL-2. Correspondingly, the expansion and cytotoxicity of CD8+ T cells were impaired in IL-21R−/− mice. Moreover, in vivo administration of IL-21 in combination with IL-15 boosted antigen-specific CD8+ T cell numbers and resulted in a cooperative effect on tumor regression, with apparent cures of large, established B16 melanomas. Thus, our studies reveal that IL-21 potently regulates CD8+ T cell expansion and effector function, primarily in a synergistic context with IL-15.


2020 ◽  
Vol 8 (2) ◽  
pp. e001557
Author(s):  
Jordana Griffiths ◽  
Khiyam Hussain ◽  
Hannah L Smith ◽  
Theodore Sanders ◽  
Kerry L Cox ◽  
...  

BackgroundPrevious data suggests that anti-OX40 mAb can elicit anti-tumor effects in mice through deletion of Tregs. However, OX40 also has powerful costimulatory effects on T cells which could evoke therapeutic responses. Human trials with anti-OX40 antibodies have shown that these entities are well tolerated but to date have delivered disappointing clinical responses, indicating that the rules for the optimal use of anti-human OX40 (hOX40) antibodies is not yet fully understood. Changes to timing and dosages may lead to improved outcomes; however, here we focus on addressing the role of agonism versus depleting activity in determining therapeutic outcomes. We investigated a novel panel of anti-hOX40 mAb to understand how these reagents and mechanisms may be optimized for therapeutic benefit.MethodsThis study examines the binding activity and in vitro activity of a panel of anti-hOX40 antibodies. They were further evaluated in several in vivo models to address how isotype and epitope determine mechanism of action and efficacy of anti-hOX40 mAb.ResultsBinding analysis revealed the antibodies to be high affinity, with epitopes spanning all four cysteine-rich domains of the OX40 extracellular domain. In vivo analysis showed that their activities relate directly to two key properties: (1) isotype—with mIgG1 mAb evoking receptor agonism and CD8+ T-cell expansion and mIgG2a mAb evoking deletion of Treg and (2) epitope—with membrane-proximal mAb delivering more powerful agonism. Intriguingly, both isotypes acted therapeutically in tumor models by engaging these different mechanisms.ConclusionThese findings highlight the significant impact of isotype and epitope on the modulation of anti-hOX40 mAb therapy, and indicate that CD8+ T-cell expansion or Treg depletion might be preferred according to the composition of different tumors. As many of the current clinical trials using OX40 antibodies are now using combination therapies, this understanding of how to manipulate therapeutic activity will be vital in directing new combinations that are more likely to improve efficacy and clinical outcomes.


2015 ◽  
Vol 39 ◽  
pp. S26
Author(s):  
G. Prince ◽  
C. Thoburn ◽  
E. Warlick ◽  
A. Hess ◽  
H. Levitsky ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A812-A812
Author(s):  
Pia Aehnlich ◽  
Per Thor Straten ◽  
Ana Micaela Carnaz Simoes ◽  
Signe Skadborg ◽  
Gitte Olofsson

BackgroundAdoptive cell therapy (ACT) is an approved treatment option for certain hematological cancers and has also shown success for some solid cancers. Still, benefit and eligibility do not extend to all patients. ACT with Vγ9Vδ2 T cells is a promising approach to overcome this hurdle.MethodsIn this study, we explored the effect of different cytokine conditions on the expansion of Vγ9Vδ2 T cells in vitro.ResultsWe could show that Vγ9Vδ2 T cell expansion is feasible with two different cytokine conditions: (a) 1000U/ml interleukin (IL)-2 and (b) 100U/ml IL-2+100U/ml IL-15. We did not observe differences in expansion rate or Vγ9Vδ2 T cell purity between the conditions; however, IL-2/IL-15-expanded Vγ9Vδ2 T cells displayed enhanced cytotoxicity against tumor cells, also in hypoxia. While this increase in killing capacity was not reflected in phenotype, we demonstrated that IL-2/IL-15-expanded Vγ9Vδ2 T cells harbor increased amounts of perforin, granzyme B and granulysin in a resting state and release more upon activation. IL-2/IL-15-expanded Vγ9Vδ2 T cells also showed higher levels of transcription factor T-bet, which could indicate that T-bet and cytotoxic molecule levels confer the increased cytotoxicity.ConclusionsThese results advocate the inclusion of IL-15 into ex vivo Vγ9Vδ2 T cell expansion protocols in future clinical studies.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2870-2870 ◽  
Author(s):  
Pengcheng He ◽  
Hong Liu ◽  
Haibo Liu ◽  
Mina Luo ◽  
Hui Feng ◽  
...  

Background : CD19-targeted CAR-T therapies have shown promising efficacy in treating B-cell malignancies. However, treatment-related toxicities, such as cytokine-release syndrome (CRS) and CAR T-cell-related encephalopathy syndrome (CRES), have been one of the major obstacles limiting the use of CAR-T therapies. How to minimize occurrence and severity of toxicity while maintaining efficacy is a major focus for T-cell therapies in development. ET019003 is a next generation CD19-targeted T-cell therapy developed by Eureka Therapeutics, built on the proprietary ARTEMISTM T-cell platform. The ET019003 construct is optimized with the co-expression of an ET190L1 Antibody-TCR (Xu et al, 2018) and novel co-stimulation molecule. We are conducting a First-in-human (FIH) study of ET019003 T cells in CD19+ r/r DLBCL patients. Methods: This FIH study aims to evaluate the safety and efficacy of ET019003 T-cell therapy in CD19+ patients with r/r DLBCL. As of July 2019, six subjects were administered ET019003 T cells. These subjects were pathologically confirmed with DLBCL that is CD19+ (by immunohistochemistry), whose disease have progressed or relapsed after 2-5 lines of prior therapies. All were high-risk patients with rapid tumor progression and heavy tumor burden. Each subject had a Ki67 proliferative index over 60%, 2/6 of the subjects had a Ki67 proliferative index over 90%. Moreover, 5/6 of the subjects had extra-nodal involvement. Following a 3-day preconditioning treatment with Fludarabine (25mg/m2/day)/ Cyclophosphamide (250mg/m2/day), patients received i.v. infusions of ET019003 T cells at an initial dose of 2-3×106 cells/kg. Additional doses at 3×106 cells/kg were administered at 14 to 30-day intervals. Adverse events were monitored and assessed based on CTCAE 5.0. Clinical responses were assessed based on Lugano 2014 criteria. Results: As of July 2019, six subjects have received at least one ET019003 T-cell infusion, and four subjects have received two or more ET019003 T-cell infusions. No Grade 2 or higher CRS was observed in the six subjects. One subject developed convulsions and cognitive disturbance. This subject had lymphoma invasion in the central nervous system before ET019003 T-cell therapy. The subject was treated with glucocorticoid and the symptoms resolved within 24 hours. Other adverse events included fever (6/6, 100%), fatigue (3/6, 50%), thrombocytopenia (3/6, 50%), diarrhea (2/6, 33%), and herpes zoster (1/6, 17%). ET019003 T-cell expansion in vivo (monitored by flow cytometry and qPCR) was observed in all six subjects after first infusion. The absolute peak value of detected ET019003 T cells ranged between 26,000 - 348,240 (median 235,500) per ml of peripheral blood. Tmax (time to reach the absolute peak value) was 6 - 14 days (median 7.5 days). For the four subjects who received multiple ET019003 T-cell infusions, the absolute peak values of detected ET019003 T cells after the second infusion were significantly lower than the absolute peak values achieved after the first infusion. For the two subjects who received three or more infusions of ET019003 T cells, no significant ET019003 T-cell expansion in vivo was observed after the third infusion. All six subjects completed the evaluation of clinical responses at 1 month after ET019003 T-cell therapy. All subjects responded to ET019003 T cells and achieved either a partial remission (PR) or complete response (CR). Conclusions: Preliminary results from six CD19+ r/r DLBCL patients in a FIH study show that ET019003 T-cell therapy is safe with robust in vivo T-cell expansion. The clinical study is on-going and we are monitoring safety as well as duration of response in longer follow-up. Reference: Xu et al. Nature Cell Discovery, 2018 Disclosures Liu: Eureka Therapeutics: Employment, Equity Ownership. Chang:Eureka Therapeutics: Equity Ownership. Liu:Eureka Therapeutics: Employment, Equity Ownership.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Xinjing Liu ◽  
Ruiyao Hu ◽  
Lulu Pei ◽  
Yuming Xu ◽  
Bo Song

Background: The interleukin (IL)-33 could promote proliferation of regulatory T lymphocytes (Tregs) which are negatively related with brain damage after ischemic stroke. How IL-33 works on Tregs after stroke is unclear. The purpose of this study was to investigate the role of IL-33 for Tregs-mediated neuroprotection and further expounded the mechanisms of protection in mice. Methods: In vitro study, primary mice neuronal cells were subjected to 3h oxygen-glucose deprivation (OGD). The vehicle or drug conditioned Tregs were applied to neurons at the time of induction of hypoxia respectively. Neuronal apoptosis, Tregs related cytokines were measured by MTT assay, Western blotting and enzyme-linked immune-sorbent assay (ELISA). In vivo study, Tregs were depleted by intraperitoneal administration of anti-CD25Ab. Intraperitoneal injection of IL-33 immediately post 60 min transient middle cerebral artery occlusion (tMCAO) modeling. The neurological function test at days 1, 3, 5, 7 and 14 after tMCAO. Infarct volume, Brain edema, cell death, percentage of Tregs and related cytokines were respectively measured by 2,3,5-triphenyltetrazolium chloride or MAP2 staining, dry-wet method, TUNEL staining, flow cytometry and immunofluorescence, Western blotting and ELISA. Results: The supernatant of IL-33-treated Tregs reduced neuronal apoptosis in the OGD model meanwhile elevated the production of Tregs related cytokines IL-10, IL-35 and TGF- β in vitro. Intraperitoneal administration of IL-33 significantly reduced infarct volume and stroke-induced cell death and improved sensorimotor functions. Notably, the protective effect of IL-33 was abolished in mice depleted of Tregs. IL-33 increased CD4+CD25+Foxp3+ Tregs in spleens, blood, and brain in vivo. Yet, ST2 blocking muted these IL-33 activities. Mechanistically, the protection of IL-33 was associated with reduced apoptosis protein and production of Tregs related cytokine. Conclusions: This study elucidated that IL-33 afforded neuroprotection against ischemic brain injury by enhancing ST2-dependent regulatory T-cell expansion and activation, which suggested a promising immune modulatory target for the treatment of stroke.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2974-2974
Author(s):  
Xiaofan Li ◽  
Wei He ◽  
Ruishu Deng ◽  
Can Liu ◽  
Miao Wang ◽  
...  

Abstract Abstract 2974 Alloreactive donor CD8+ T cells facilitate engraftment and mediate graft versus leukemia (GVL) effects but also cause graft versus host disease (GVHD) in murine and human recipients after allogeneic hematopoietic cell transplantation (HCT). B7-H1 (PD-L1) expression by antigen-presenting cells has an important role in tolerizing activated T cells by binding to PD-1. We and others previously reported that disruption of binding between B7-H1 and PD-1 augments acute GVHD. Parenchymal cells do not usually express B7-H1 but can be induced by inflammatory cytokines (i.e. IFN-g) to express B7-H1. The role of B7-H1 expression by parenchymal tissue cells in regulating the expansion and persistence of donor CD8+ cells in tissues of mice with GVHD has not yet been evaluated. In the current studies, we evaluated the role of B7-H1 expression by GVHD target tissues in regulating donor CD8+ T cell function in 3 different experimental GVHD systems, using in vivo bioluminescent imaging (BLI), in vivo BrdU-labeling, and in vitro proliferation assays. The first system evaluated the role of B7-H1 expression in TBI-conditioned recipients. In these recipients, injected donor CD8+ T cells showed two waves of expansion that correlated with two phases of clinical GVHD. The first wave of donor CD8+ T cell expansion was associated with upregulated expression of B7-H1 in GVHD target tissues and only weak clinical GVHD. The second wave of donor CD8+ T cell expansion was associated with loss of B7-H1 expression, vigorous donor CD8+ T proliferation and expansion in the GVHD target tissues, and lethal GVHD. In a gain-of-function experiment, B7-H1 expression was induced in hepatocytes by hydrodynamic injection of B7-H1 cDNA during the second wave of T cell expansion in mice with GVHD; this subsequently decreased T cell expansion in the liver and ameliorated GVHD. The second system evaluated the role of B7-H1 expression in anti-CD3-conditioned recipients. In wild-type recipients, injected donor CD8+ T cells had only a single wave of expansion, and the mice had no signs of GVHD. B7-H1 expression by tissue cells (i.e. hepatocytes) was up-regulated, and the tissue infiltrating donor CD8+ T cells were anergic. In B7-H1−/− recipients, injected donor CD8+ T cells proliferated vigorously in GVHD target tissues and caused lethal GVHD.The third system evaluated the role of B7-H1 in unconditioned Rag-2−/− recipients after administration of blocking anti-B7-H1 and in the B7-H1−/−Rag-2−/− chimeras with B7-H1 sufficient Rag-2−/− bone marrow cells, in which B7-H1 deficiency was only in tissue parenchymal cells. Both blockade of B7-H1 and B7-H1 deficiency in parenchymal cells resulted in vigorous donor CD8+ T proliferation in GVHD target tissues and caused lethal GVHD. Taken together, these results show that expression of B7-H1 in GVHD target tissue parenchymal cells plays an important role in regulating the proliferation of infiltrating donor CD8+ T cells and preventing the persistence of GVHD. Our studies also indicate that TBI but not anti-CD3 conditioning can lead to loss of GVHD target tissue cell expression of B7-H1 and persistence of GVHD. Disclosures: No relevant conflicts of interest to declare.


2002 ◽  
Vol 197 (1) ◽  
pp. 51-62 ◽  
Author(s):  
Clint S. Schmidt ◽  
Jinqi Liu ◽  
Tonghai Zhang ◽  
Ho Yeong Song ◽  
George Sandusky ◽  
...  

Targeted disruption of death receptor (DR)6 results in enhanced CD4+ T cell expansion and T helper cell type 2 differentiation after stimulation. Similar to T cells, DR6 is expressed on resting B cells but is down-regulated upon activation. We examined DR6−/− B cell responses both in vitro and in vivo. In vitro, DR6−/− B cells undergo increased proliferation in response to anti–immunoglobulin M, anti-CD40, and lipopolysaccharide. This hyperproliferative response was due, at least in part, to both increased cell division and reduced cell apoptosis when compared with wild-type B cells. Consistent with these observations, increased nuclear levels and activity of nuclear factor κB transcription factor, c-Rel, and elevated Bcl-xl expression were observed in DR6−/− B cells upon stimulation. In addition, DR6−/− B cells exhibited higher surface levels of CD86 upon activation and were more effective as antigen-presenting cells in an allogeneic T cell proliferation response. DR6−/− mice exhibited enhanced germinal center formation and increased titers of immunoglobulins to T-dependent as well as T-independent type I and II antigens. This is the first demonstration of a regulatory role of DR6 in the activation and function of B cells.


Sign in / Sign up

Export Citation Format

Share Document