scholarly journals Mucosal vaccines: wisdom from now and then

Author(s):  
Hiroshi Kiyono ◽  
Yoshikazu Yuki ◽  
Rika Nakahashi-Ouchida ◽  
Kohtaro Fujihashi

Abstract The oral and nasal cavities are covered by the mucosal epithelium that starts at the beginning of the aero-digestive tract. These mucosal surfaces are continuously exposed to environmental antigens including pathogens and allergens and are thus equipped with a mucosal immune system that mediates initial recognition of pathogenicity and initiates pathogen-specific immune responses. At the dawn of our scientific effort to explore the mucosal immune system, dental science was one of the major driving forces as it provided insights into the importance of mucosal immunity and its application for the control of oral infectious diseases. The development of mucosal vaccines for the prevention of dental caries was thus part of a novel approach that contributed to building the scientific foundations of the mucosal immune system. Since then, mucosal immunology and vaccines have gone on a scientific journey to become one of the major entities within the discipline of immunology. Here, we introduce our past and current efforts and future directions for the development of mucosal vaccines, specifically a rice-based oral vaccine (MucoRice) and a nanogel-based nasal vaccine, with the aim of preventing and controlling gastrointestinal and respiratory infectious diseases using the interdisciplinary fusion of mucosal immunology with agricultural science and biomaterial engineering, respectively.

2020 ◽  
Vol 11 (SPL1) ◽  
pp. 753-757
Author(s):  
Anagha Gulhane ◽  
Shamli Hiware

It is the most unreliable truth that anybody can get infected by the COVID-19, and nobody can escape from the danger of getting tainted by the virus. Yet, the line of hope is that anyone and everyone can boost their resistance, thus avoid the risk of getting affected by the illness. The immunity of humans pulls down as they grow older. If their immune system is robust, them falling sick is feeble. If their resistance is weak, them getting ill is sound. Several factors affect the immune system and its ability, including its nourishment. A two-way connection between nutrition, infection and immunity presents. Changes in one part will affect the others part in our body that's the nature's rule. Well defined immune system quality which is present between each life phase may influence the type, generality and the degree of infections. At the same time, low nutrition to the body will decrease the immune function and expose the body to the danger of getting infected by infectious diseases. Different quantity of micronutrients is required for increasing the immunity power of our body. Generally the vitamins A,C,D,E,B2,B6,B12, iron, zinc and selenium.The deficiencies of micronutrients are acknowledged as a global health issue, and also low nutrition makes it prone to establishes the infections in the body.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Behzad Ghanbari

Abstract Humans are always exposed to the threat of infectious diseases. It has been proven that there is a direct link between the strength or weakness of the immune system and the spread of infectious diseases such as tuberculosis, hepatitis, AIDS, and Covid-19 as soon as the immune system has no the power to fight infections and infectious diseases. Moreover, it has been proven that mathematical modeling is a great tool to accurately describe complex biological phenomena. In the recent literature, we can easily find that these effective tools provide important contributions to our understanding and analysis of such problems such as tumor growth. This is indeed one of the main reasons for the need to study computational models of how the immune system interacts with other factors involved. To this end, in this paper, we present some new approximate solutions to a computational formulation that models the interaction between tumor growth and the immune system with several fractional and fractal operators. The operators used in this model are the Liouville–Caputo, Caputo–Fabrizio, and Atangana–Baleanu–Caputo in both fractional and fractal-fractional senses. The existence and uniqueness of the solution in each of these cases is also verified. To complete our analysis, we include numerous numerical simulations to show the behavior of tumors. These diagrams help us explain mathematical results and better describe related biological concepts. In many cases the approximate results obtained have a chaotic structure, which justifies the complexity of unpredictable and uncontrollable behavior of cancerous tumors. As a result, the newly implemented operators certainly open new research windows in further computational models arising in the modeling of different diseases. It is confirmed that similar problems in the field can be also be modeled by the approaches employed in this paper.


2005 ◽  
Vol 93 (S1) ◽  
pp. S41-S48 ◽  
Author(s):  
Maria Luisa Forchielli ◽  
W. Allan Walker

The newborn infant leaves a germ-free intrauterine environment to enter a contaminated extrauterine world and must have adequate intestinal defences to prevent the expression of clinical gastrointestinal disease states. Although the intestinal mucosal immune system is fully developed after a full-term birth, the actual protective function of the gut requires the microbial stimulation of initial bacterial colonization. Breast milk contains prebiotic oligosaccharides, like inulin-type fructans, which are not digested in the small intestine but enter the colon as intact large carbohydrates that are then fermented by the resident bacteria to produce SCFA. The nature of this fermentation and the consequent pH of the intestinal contents dictate proliferation of specific resident bacteria. For example, breast milk-fed infants with prebiotics present in breast milk produce an increased proliferation of bifidobacteria and lactobacilli (probiotics), whereas formula-fed infants produce more enterococci and enterobacteria. Probiotics, stimulated by prebiotic fermentation, are important to the development and sustainment of intestinal defences. For example, probiotics can stimulate the synthesis and secretion of polymeric IgA, the antibody that coats and protects mucosal surfaces against harmful bacterial invasion. In addition, appropriate colonization with probiotics helps to produce a balanced T helper cell response (Th1 = Th2 = Th3/Tr1) and prevent an imbalance (Th1 > Th2 or Th2 > Th1) contributing in part to clinical disease (Th2 imbalance contributes to atopic disease and Th1 imbalance contributes to Crohn's disease andHelicobacter pylori-induced gastritis). Furthermore, a series of pattern recognition receptors, toll-like receptors on gut lymphoid and epithelial cells that interact with bacterial molecular patterns (e.g. endotoxin (lipopolysaccharide), flagellin, etc.), help modulate intestinal innate immunity and an appropriate adaptive immune response. Animal and clinical studies have shown that inulin-type fructans will stimulate an increase in probiotics (commensal bacteria) and these bacteria have been shown to modulate the development and persistence of appropriate mucosal immune responses. However, additional studies are needed to show that prebiotics can directly or indirectly stimulate intestinal host defences. If this can be demonstrated, then prebiotics can be used as a dietary supplement to stimulate a balanced and an appropriately effective mucosal immune system in newborns and infants.


ILAR Journal ◽  
2018 ◽  
Vol 59 (3) ◽  
pp. 209-210
Author(s):  
Gregers Jungersen ◽  
Jorge Piedrahita

Abstract Valid interpretation of preclinical animal models in immunology-related clinical challenges is important to solve outstanding clinical needs. Given the overall complexity of the immune system and both species- and tissue-specific immune peculiarities, the selection and design of appropriate immune-relevant animal models is, however, not following a straightforward path. The topics in this issue of the ILAR Journal provide assessments of immune-relevant animal models used in oncology, hematopoietic-, CAR-T cell- and xenotransplantation, adjuvants and infectious diseases, and immune privileged inflammation that are providing key insights into unmet human clinical needs.


1988 ◽  
Vol 12 (5) ◽  
pp. 384-387 ◽  
Author(s):  
Michael E. Lamm

Sign in / Sign up

Export Citation Format

Share Document