scholarly journals Flight and dietary antioxidants influence antioxidant expression and activity in a migratory bird

Author(s):  
Kristen J DeMoranville ◽  
Wales A Carter ◽  
Barbara J Pierce ◽  
Scott R McWilliams

Abstract Ecologically-relevant factors such as exercise and diet quality can directly influence how physiological systems work including those involved in maintaining oxidative balance; however, to our knowledge, no studies to date have focused on how such factors directly affect expression of key components of the endogenous antioxidant system (i.e., transcription factors, select antioxidant genes, and corresponding antioxidant enzymes) in several metabolically active tissues of a migratory songbird. We conducted a 3-factor experiment that tested the following hypotheses: (H1) Daily flying over several weeks increases the expression of transcription factors NRF2 and PPARs as well as endogenous antioxidant genes (i.e., CAT, SOD1, SOD2, GPX1, GPX4), and upregulates endogenous antioxidant enzyme activities (i.e., CAT, SOD, GPx). (H2) Songbirds fed diets composed of more 18:2n-6 PUFA are more susceptible to oxidative damage and thus upregulate their endogenous antioxidant system compared to when fed diets with less PUFA. (H3) Songbirds fed dietary anthocyanins gain additional antioxidant protection and thus upregulate their endogenous antioxidant system less compared to songbirds not fed anthocyanins. Flight training increased the expression of 3 of the 6 antioxidant genes and transcription factors measured in the liver, consistent with H1, but for only one gene (SOD2) in the pectoralis. Dietary fat quality had no effect on antioxidant pathways (H2) whereas dietary anthocyanins increased the expression of select antioxidant enzymes in the pectoralis, but not in the liver (H3). These tissue-specific differences in response to flying and dietary antioxidants are likely explained by functional differences between tissues as well as fundamental differences in their turnover rates. The consumption of dietary antioxidants along with regular flying enables birds during migration to stimulate the expression of genes involved in antioxidant protection likely through increasing the transcriptional activity of NRF2 and PPARs, and thereby demonstrates for the first time that these relevant ecological factors affect the regulation of key antioxidant pathways in wild birds. What remains to be demonstrated is how the extent of these ecological factors (i.e., intensity or duration of flight, amounts of dietary antioxidants) influences the regulation of these antioxidant pathways and thus oxidative balance.

2021 ◽  
Vol 9 ◽  
Author(s):  
Scott McWilliams ◽  
Wales Carter ◽  
Clara Cooper-Mullin ◽  
Kristen DeMoranville ◽  
Abigail Frawley ◽  
...  

Animals dynamically adjust their physiology and behavior to survive in changing environments, and seasonal migration is one life stage that demonstrates these dynamic adjustments. As birds migrate between breeding and wintering areas, they incur physiological demands that challenge their antioxidant system. Migrating birds presumably respond to these oxidative challenges by up-regulating protective endogenous systems or accumulating dietary antioxidants at stopover sites, although our understanding of the pre-migration preparations and mid-migration responses of birds to such oxidative challenges is as yet incomplete. Here we review evidence from field and captive-bird studies that address the following questions: (1) Do migratory birds build antioxidant capacity as they build fat stores in preparation for long flights? (2) Is oxidative damage an inevitable consequence of oxidative challenges such as flight, and, if so, how is the extent of damage affected by factors such as the response of the antioxidant system, the level of energetic challenge, and the availability of dietary antioxidants? (3) Do migratory birds ‘recover’ from the oxidative damage accrued during long-duration flights, and, if so, does the pace of this rebalancing of oxidative status depend on the quality of the stopover site? The answer to all these questions is a qualified ‘yes’ although ecological factors (e.g., diet and habitat quality, geographic barriers to migration, and weather) affect how the antioxidant system responds. Furthermore, the pace of this dynamic physiological response remains an open question, despite its potential importance for shaping outcomes on timescales ranging from single flights to migratory journeys. In sum, the antioxidant system of birds during migration is impressively dynamic and responsive to environmental conditions, and thus provides ample opportunities to study how the physiology of migratory birds responds to a changing and challenging world.


Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 470
Author(s):  
Rui Ying ◽  
Zhaohui Zhang ◽  
Huiying Zhu ◽  
Bafang Li ◽  
Hu Hou

The objective of this research was to extract and prepare mycosporine-like amino acids (MAAs) and investigate the mechanism by which they act against UV-induced skin photoaging in Institute of Cancer Research (ICR ) mice. MAAs such as porphyra-334 and shinorine were extracted from Porphyra yezoensis, separated, and purified using column chromatography with SA-2 cation exchange resin. The effects of MAAs on the activity of endogenous antioxidant enzymes, namely total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and malondialdehyde (MDA) were analyzed in mouse skin tissue. Pathological changes of skin tissue caused by ultraviolet radiation and the arrangement of collagen were observed by Hematoxylin-Eosin (HE) staining and scanning electron microscopy (SEM). Interleukin 1β (IL-1β), IL-6, and IL-10 were detected using the quantitative real-time reverse transcription-polymerase chain reaction (qPCR) and Enzyme Linked Immunosorbent Assay (ELISA). The concentration and expression of these proinflammatory cytokines was associated with the presence of nuclear factor (NF)-κB. The results show that MAA compounds from Porphyra yezoensis could suppress UV-induced photoaging of skin by inhibiting the reduction of endogenous antioxidant enzymes. Compared to the control group, the concentrations of SOD, GSH-Px, and CAT increased significantly in skin tissue homogenate following the external administration of MAAs (p < 0.05, p < 0.01), while the content of MDA decreased significantly (p < 0.05). Meanwhile, the administration of MAAs was associated with down-regulations in the concentration and mRNA expression of NF-κB, IL-1β, IL-6, and IL-10. The results suggest that MAAs could protect skin from photodamage by increasing antioxidant enzyme activities and inhibiting inflammation.


2015 ◽  
Vol 17 (3) ◽  
Author(s):  
Ye. B. Dmukhalska ◽  
Ya. I. Honsky

<p>The effect of peptide tsysteil-histidil-tyrosil-histidil-isoleucine on the state of antioxidant protection (superoxide<br />dismutase, catalase) and lipid peroxidation has been reached. The peptide exhibits antioxidant activity, the correction<br />of the peptide reduces free radical processes and decreases the products of lipid peroxidation and increases<br />antioxidant enzymes activity.</p>


2018 ◽  
Vol 99 (6) ◽  
pp. 919-923
Author(s):  
N G Elmanova

Aim. Study of the features of changes of antioxidant protection in patients with mechanical jaundice of benign and malignant origin in dynamics. Methods. The author studied the role of antioxidant system in the progression of mechanical jaundice of various origins in 104 patients. Groups of patients with a syndrome of mechanical jaundice of benign (62 patients) and malignant origin (42 patients) were isolated. The material of the study was blood from the ulnar vein, which was taken in the morning on an empty stomach before surgery. In the dynamics (on the 7th day after the operation), 53 patients were examined. To assess the state of antioxidant protection, a spectrophotometric method of investigation was used. Results. A high level of malonic dialdehyde, the product of lipid peroxidation, was determined in all patients regardless of origin. There was also a depression of the enzymatic link of antioxidant protection (a decrease in the activity of superoxide dismutase and catalase). After surgical intervention in patients with mechanical jaundice of benign origin, correction of the level of reduced glutathione was observed. In patients with mechanical jaundice of malignant origin in dynamics, the activity of antioxidant enzymes did not differ significantly from the norm (p1-3 = 0,23; p1-3 = 311). Conclusion. After surgical intervention, partial improvement of the condition of patients with mechanical jaundice of benign origin was observed, and dysfunction of antioxidant protection persisted in patients with mechanical jaundice of malignant origin.


2016 ◽  
Vol 7 (2) ◽  
pp. 861-871 ◽  
Author(s):  
Yu-Ra Son ◽  
Eun-Hye Choi ◽  
Goon-Tae Kim ◽  
Tae-Sik Park ◽  
Soon-Mi Shim

The aims of this study were to determine bioactive components of Graviola leaf extracts and to examine the radical scavenging capacity, gene expression of antioxidant enzymes and transcription factors.


2006 ◽  
Vol 76 (5) ◽  
pp. 324-331 ◽  
Author(s):  
Marsh ◽  
Laursen ◽  
Coombes

Erythrocytes transport oxygen to tissues and exercise-induced oxidative stress increases erythrocyte damage and turnover. Increased use of antioxidant supplements may alter protective erythrocyte antioxidant mechanisms during training. Aim of study: To examine the effects of antioxidant supplementation (α-lipoic acid and α-tocopherol) and/or endurance training on the antioxidant defenses of erythrocytes. Methods: Young male Wistar rats were assigned to (1) sedentary; (2) sedentary and antioxidant-supplemented; (3) endurance-trained; or (4) endurance-trained and antioxidant-supplemented groups for 14 weeks. Erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activities, and plasma malondialdehyde (MDA) were then measured. Results: Antioxidant supplementation had no significant effect (p > 0.05) on activities of antioxidant enzymes in sedentary animals. Similarly, endurance training alone also had no effect (p > 0.05). GPX (125.9 ± 2.8 vs. 121.5 ± 3.0 U.gHb–1, p < 0.05) and CAT (6.1 ± 0.2 vs. 5.6 ± 0.2 U.mgHb–1, p < 0.05) activities were increased in supplemented trained animals compared to non-supplemented sedentary animals whereas SOD (61.8 ± 4.3 vs. 52.0 ± 5.2 U.mgHb–1, p < 0.05) activity was decreased. Plasma MDA was not different among groups (p > 0.05). Conclusions: In a rat model, the combination of exercise training and antioxidant supplementation increased antioxidant enzyme activities (GPX, CAT) compared with each individual intervention.


Author(s):  
O. I. Horielova ◽  
◽  
N. I. Ryabchun ◽  
M. A. Shkliarevskyi ◽  
A. M. Reznik ◽  
...  

Along with specific adaptive reactions, universal defense reactions, in particular activation of antioxidant system, are of great importance for plant survival under cold conditions. We have studied a relationship among the content of low-molecular-weight protective compounds with antioxidant properties (proline, soluble carbohydrates, flavonoids), the activity of antioxidant enzymes (superoxide dismutase, catalase, and guaiacol peroxidase) in seedlings of winter wheat, rye and triticale, and frost resistance of etiolated seedlings and adult plants at tillering stage. It was found that there was a fairly close correlation between the frost resistance of seedlings and adult cereal plants (r = 0,78). It was shown that a pronounced relationship between individual indicators of antioxidant system functioning in unhardened seedlings and their frost resistance was not found. After 6-day hardening of seedlings at 2-4°C, there was a high correlation between the total indicator of the enzymatic antioxidant system (the sum of normalized indicators of superoxide dismutase, peroxidase, and catalase activity) and their frost resistance (r = 0,86), but the correlation coefficient of this index with frost resistance of plants in tillering phase was significantly lower (r = 0,47). At the same time, a high correlation was found between the content of low-molecular-weight protectors in hardened seedlings and frost resistance of tillering adult plants (r = 0.89). The closest correlation was observed between the integral normalized indicator, comprising the sum of normalized values of antioxidant enzymes activity and the content of low-molecular-weight protectors in hardened seedlings, and frost resistance of seedlings (r = 0,94) and plants in tillering phase (r = 0,89). A presence of specific features in the functioning of antioxidant system during cold adaptation of cereal seedlings was established. Rye is characterized by a high content of low-molecular-weight protective compounds; at the same time, increased activity of antioxidant enzymes - superoxide dismutase and catalase - was noted in wheat seedlings. In triticale, depending on the genotype, the values of both enzymatic antioxidant activity and the content of low-molecular-weight protectors varied.


Zygote ◽  
2019 ◽  
Vol 27 (6) ◽  
pp. 432-435
Author(s):  
Thais Rose dos Santos Hamilton ◽  
Gabriela Esteves Duarte ◽  
José Antonio Visintin ◽  
Mayra Elena Ortiz D’Ávila Assumpção

SummaryLong-term heat stress (HS) induced by testicular insulation generates oxidative stress (OS) on the testicular environment; consequently activating antioxidant enzymes such as superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (GPx). The aim of this work was to immunolocalize antioxidant enzymes present in different cells within the seminiferous tubule when rams were submitted to HS. Rams were divided into control (n = 6) and treated group (n = 6), comprising rams subjected to testicular insulation for 240 h. After the testicular insulation period, rams were subjected to orchiectomy. Testicular fragments were submitted to immunohistochemistry for staining against SOD, GR and GPx enzymes. We observed immunolocalization of GPx in more cell types of the testis after HS and when compared with other enzymes. In conclusion, GPx is the main antioxidant enzyme identified in testicular cells in an attempt to maintain oxidative balance when HS occurs.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1056.2-1057
Author(s):  
S. Bedina ◽  
E. Mozgovaya ◽  
A. Trofimenko ◽  
S. Spitsina ◽  
M. Mamus

Background:Rheumatoid arthritis (RA) is an autoimmune rheumatic disease of unknown etiology characterized by chronic erosive arthritis and systemic organ involvement resulting in early disability and shorter life expectancy. Neutrophils are suggested to play a substantial role in the induction and promotion of autoimmune inflammation in RA. This ability can be based on newly discovered feature of neutrophils to release neutrophil extracellular traps (NETs) during specific type cell death called NETosis. Hyperproduction of reactive oxygen species (ROS) is one of the factors promoting NETs production. With this background, the study of pro- and antioxidant enzymatic activities in RA patients can be of great interest.Objectives:To assess plasma activities of essential prooxidant and antioxidant enzymes in RA patients.Methods:The research was carried out in agreement with the WMA Declaration of Helsinki principles. 71 RA patients (46 women and 25 men) were enrolled in the study. The diagnosis was verified using ACR/EULAR criteria (2010). RA activity was measured using the Disease Activity Score of 28 joints (DAS28). 30 healthy persons comprise control group. Plasma xanthine oxidase (XO; ЕС 1.17.3.2), xanthine dehydrogenase (XDH; ЕС 1.17.1.4) and superoxide dismutase (SOD; ЕС 1.15.1.1) activities were measured using spectrophotometric technique. XO and XDG activities were expressed as nmol/ml/min, SOD activity – as units of action. Statistical analysis was performed using Statistica 6.0 software package. Differences were considered significant when p<0.05. Reference ranges were calculated as means ±2SD.Results:Mean age of patients was 43.2±3.6 years, mean RA duration was 11.9±2.6 years. 24 (33.8%) RA patients had low disease activity, and 6 (8.5%) patients had high one. Extra-articular manifestations were found in 30 (42.2%) patients. 30% of them had cardiovascular involvement, 23.3% – pulmonary lesions, and 23.3% had renal involvement. Reference ranges for XO, XDG, and SOD activities were 2.28-5.12 nmol/min/ml, 3,96-7,24 nmol/min/ml, and 3,13-6,58 units, respectively. We examined activities of these enzymes in circulation of RA patients with different patterns of clinical manifestations as well as relationship between RA activity and XO, XDG, and SOD activities. RA patients had increased both mean XO and mean SOD activities (p<0.001 for both enzymes). XO activity reached its highest values at maximum disease activity and overt extra-articular involvements, while SOD activity did it in moderate and high disease activities as well as in patients with joint manifestations. XDG activity was increased in low disease activity (р<0.001) and solely joint lesions (р=0.011), while moderate or high disease activities (р=0.008) and extra-articular involvements (р=0.025) were characterized by decreased activity of this enzyme.Conclusion:We have revealed substantial multidirectional changes of plasma XO and XDG activities in RA. Plasma enzymatic pattern in RA patients is characterized by activation of both oxidant and antioxidant metabolic pathways. Activities of XO and SOD were positively correlated with RA activity, while XDG activity was negative correlated with RA activity. The differences between selective articular RA type and RA form with extraarticular manifestations were also revealed. Changes in oxidant and antioxidant enzyme activities can be connected with anticitrulline autoimmunity in RA via production of citrulline-rich neutrophil extracellular traps, thus enhancing rheumatoid autoimmunity.Disclosure of Interests:None declared


Nanoscale ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 3855-3863 ◽  
Author(s):  
Namrata Singh ◽  
Mohammed Azharuddin Savanur ◽  
Shubhi Srivastava ◽  
Patrick D'Silva ◽  
Govindasamy Mugesh

Multi-enzyme mimetic Mn3O4 nanoflowers (Mp) modulate the redox state of mammalian cells without altering the cellular antioxidant machinery under oxidative stress conditions.


Sign in / Sign up

Export Citation Format

Share Document