scholarly journals Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts

2017 ◽  
Vol 24 (4) ◽  
pp. 813-821 ◽  
Author(s):  
Anne Cocos ◽  
Alexander G Fiks ◽  
Aaron J Masino

Abstract Objective Social media is an important pharmacovigilance data source for adverse drug reaction (ADR) identification. Human review of social media data is infeasible due to data quantity, thus natural language processing techniques are necessary. Social media includes informal vocabulary and irregular grammar, which challenge natural language processing methods. Our objective is to develop a scalable, deep-learning approach that exceeds state-of-the-art ADR detection performance in social media. Materials and Methods We developed a recurrent neural network (RNN) model that labels words in an input sequence with ADR membership tags. The only input features are word-embedding vectors, which can be formed through task-independent pretraining or during ADR detection training. Results Our best-performing RNN model used pretrained word embeddings created from a large, non–domain-specific Twitter dataset. It achieved an approximate match F-measure of 0.755 for ADR identification on the dataset, compared to 0.631 for a baseline lexicon system and 0.65 for the state-of-the-art conditional random field model. Feature analysis indicated that semantic information in pretrained word embeddings boosted sensitivity and, combined with contextual awareness captured in the RNN, precision. Discussion Our model required no task-specific feature engineering, suggesting generalizability to additional sequence-labeling tasks. Learning curve analysis showed that our model reached optimal performance with fewer training examples than the other models. Conclusions ADR detection performance in social media is significantly improved by using a contextually aware model and word embeddings formed from large, unlabeled datasets. The approach reduces manual data-labeling requirements and is scalable to large social media datasets.

10.2196/23230 ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. e23230
Author(s):  
Pei-Fu Chen ◽  
Ssu-Ming Wang ◽  
Wei-Chih Liao ◽  
Lu-Cheng Kuo ◽  
Kuan-Chih Chen ◽  
...  

Background The International Classification of Diseases (ICD) code is widely used as the reference in medical system and billing purposes. However, classifying diseases into ICD codes still mainly relies on humans reading a large amount of written material as the basis for coding. Coding is both laborious and time-consuming. Since the conversion of ICD-9 to ICD-10, the coding task became much more complicated, and deep learning– and natural language processing–related approaches have been studied to assist disease coders. Objective This paper aims at constructing a deep learning model for ICD-10 coding, where the model is meant to automatically determine the corresponding diagnosis and procedure codes based solely on free-text medical notes to improve accuracy and reduce human effort. Methods We used diagnosis records of the National Taiwan University Hospital as resources and apply natural language processing techniques, including global vectors, word to vectors, embeddings from language models, bidirectional encoder representations from transformers, and single head attention recurrent neural network, on the deep neural network architecture to implement ICD-10 auto-coding. Besides, we introduced the attention mechanism into the classification model to extract the keywords from diagnoses and visualize the coding reference for training freshmen in ICD-10. Sixty discharge notes were randomly selected to examine the change in the F1-score and the coding time by coders before and after using our model. Results In experiments on the medical data set of National Taiwan University Hospital, our prediction results revealed F1-scores of 0.715 and 0.618 for the ICD-10 Clinical Modification code and Procedure Coding System code, respectively, with a bidirectional encoder representations from transformers embedding approach in the Gated Recurrent Unit classification model. The well-trained models were applied on the ICD-10 web service for coding and training to ICD-10 users. With this service, coders can code with the F1-score significantly increased from a median of 0.832 to 0.922 (P<.05), but not in a reduced interval. Conclusions The proposed model significantly improved the F1-score but did not decrease the time consumed in coding by disease coders.


2019 ◽  
Author(s):  
Negacy D. Hailu ◽  
Michael Bada ◽  
Asmelash Teka Hadgu ◽  
Lawrence E. Hunter

AbstractBackgroundthe automated identification of mentions of ontological concepts in natural language texts is a central task in biomedical information extraction. Despite more than a decade of effort, performance in this task remains below the level necessary for many applications.Resultsrecently, applications of deep learning in natural language processing have demonstrated striking improvements over previously state-of-the-art performance in many related natural language processing tasks. Here we demonstrate similarly striking performance improvements in recognizing biomedical ontology concepts in full text journal articles using deep learning techniques originally developed for machine translation. For example, our best performing system improves the performance of the previous state-of-the-art in recognizing terms in the Gene Ontology Biological Process hierarchy, from a previous best F1 score of 0.40 to an F1 of 0.70, nearly halving the error rate. Nearly all other ontologies show similar performance improvements.ConclusionsA two-stage concept recognition system, which is a conditional random field model for span detection followed by a deep neural sequence model for normalization, improves the state-of-the-art performance for biomedical concept recognition. Treating the biomedical concept normalization task as a sequence-to-sequence mapping task similar to neural machine translation improves performance.


News is a routine in everyone's life. It helps in enhancing the knowledge on what happens around the world. Fake news is a fictional information madeup with the intension to delude and hence the knowledge acquired becomes of no use. As fake news spreads extensively it has a negative impact in the society and so fake news detection has become an emerging research area. The paper deals with a solution to fake news detection using the methods, deep learning and Natural Language Processing. The dataset is trained using deep neural network. The dataset needs to be well formatted before given to the network which is made possible using the technique of Natural Language Processing and thus predicts whether a news is fake or not.


2021 ◽  
Author(s):  
Oscar Nils Erik Kjell ◽  
H. Andrew Schwartz ◽  
Salvatore Giorgi

The language that individuals use for expressing themselves contains rich psychological information. Recent significant advances in Natural Language Processing (NLP) and Deep Learning (DL), namely transformers, have resulted in large performance gains in tasks related to understanding natural language such as machine translation. However, these state-of-the-art methods have not yet been made easily accessible for psychology researchers, nor designed to be optimal for human-level analyses. This tutorial introduces text (www.r-text.org), a new R-package for analyzing and visualizing human language using transformers, the latest techniques from NLP and DL. Text is both a modular solution for accessing state-of-the-art language models and an end-to-end solution catered for human-level analyses. Hence, text provides user-friendly functions tailored to test hypotheses in social sciences for both relatively small and large datasets. This tutorial describes useful methods for analyzing text, providing functions with reliable defaults that can be used off-the-shelf as well as providing a framework for the advanced users to build on for novel techniques and analysis pipelines. The reader learns about six methods: 1) textEmbed: to transform text to traditional or modern transformer-based word embeddings (i.e., numeric representations of words); 2) textTrain: to examine the relationships between text and numeric/categorical variables; 3) textSimilarity and 4) textSimilarityTest: to computing semantic similarity scores between texts and significance test the difference in meaning between two sets of texts; and 5) textProjection and 6) textProjectionPlot: to examine and visualize text within the embedding space according to latent or specified construct dimensions (e.g., low to high rating scale scores).


2015 ◽  
Vol 2015 (3) ◽  
pp. 117-126
Author(s):  
Дмитрий Будыльский ◽  
Dmitriy Budylskiy ◽  
Александр Подвесовский ◽  
Aleksandr Podvesovskiy

This paper describes actual problem of sentiment based aspect analysis and four deep learning models: convolutional neural network, recurrent neural network, GRU and LSTM networks. We evaluated these models on Russian text dataset from SentiRuEval-2015. Results show good efficiency and high potential for further natural language processing applications.


Author(s):  
Tamanna Sharma ◽  
Anu Bajaj ◽  
Om Prakash Sangwan

Sentiment analysis is computational measurement of attitude, opinions, and emotions (like positive/negative) with the help of text mining and natural language processing of words and phrases. Incorporation of machine learning techniques with natural language processing helps in analysing and predicting the sentiments in more precise manner. But sometimes, machine learning techniques are incapable in predicting sentiments due to unavailability of labelled data. To overcome this problem, an advanced computational technique called deep learning comes into play. This chapter highlights latest studies regarding use of deep learning techniques like convolutional neural network, recurrent neural network, etc. in sentiment analysis.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Venkateswara Rao Kota ◽  
Shyamala Devi Munisamy

PurposeNeural network (NN)-based deep learning (DL) approach is considered for sentiment analysis (SA) by incorporating convolutional neural network (CNN), bi-directional long short-term memory (Bi-LSTM) and attention methods. Unlike the conventional supervised machine learning natural language processing algorithms, the authors have used unsupervised deep learning algorithms.Design/methodology/approachThe method presented for sentiment analysis is designed using CNN, Bi-LSTM and the attention mechanism. Word2vec word embedding is used for natural language processing (NLP). The discussed approach is designed for sentence-level SA which consists of one embedding layer, two convolutional layers with max-pooling, one LSTM layer and two fully connected (FC) layers. Overall the system training time is 30 min.FindingsThe method performance is analyzed using metrics like precision, recall, F1 score, and accuracy. CNN is helped to reduce the complexity and Bi-LSTM is helped to process the long sequence input text.Originality/valueThe attention mechanism is adopted to decide the significance of every hidden state and give a weighted sum of all the features fed as input.


2021 ◽  
Vol 11 (4) ◽  
pp. 1597
Author(s):  
Jieh-Haur Chen ◽  
Mu-Chun Su ◽  
Vidya Trisandini Azzizi ◽  
Ting-Kwei Wang ◽  
Wei-Jen Lin

Technological developments have made the construction industry efficient. The aim of this research is to solve communication interaction problems to build a project management platform using the interactive concept of natural language processing technology. A comprehensive literature review and expert interviews associated with techniques dealing with natural languages suggests the proposed system containing the Progressive Scale Expansion Network (PSENet), Convolutional Recurrent Neural Network (CRNN), and Bi-directional Recurrent Neutral Networks Convolutional Recurrent Neural Network (BRNN-CNN) toolboxes to extract the key words for construction projects contracts. The results show that a fully automatic platform facilitating contract management is achieved. For academic domains, the Contract Keyword Detection (CKD) mechanism integrating PSENet, CRNN, and BRNN-CNN approaches to cope with real-time massive document flows is novel in the construction industry. For practice, the proposed approach brings significant reduction for manpower and human error, an alternative for settling down misunderstanding or disputes due to real-time and precise communication, and a solution for efficient documentary management. It connects all contract stakeholders proficiently.


Sign in / Sign up

Export Citation Format

Share Document