scholarly journals Application of deep learning models for aspect based sentiment analysis.

2015 ◽  
Vol 2015 (3) ◽  
pp. 117-126
Author(s):  
Дмитрий Будыльский ◽  
Dmitriy Budylskiy ◽  
Александр Подвесовский ◽  
Aleksandr Podvesovskiy

This paper describes actual problem of sentiment based aspect analysis and four deep learning models: convolutional neural network, recurrent neural network, GRU and LSTM networks. We evaluated these models on Russian text dataset from SentiRuEval-2015. Results show good efficiency and high potential for further natural language processing applications.

CONVERTER ◽  
2021 ◽  
pp. 579-590
Author(s):  
Weirong Xiu

Convolutional neural network based on attention mechanism and a bidirectional independent recurrent neural network tandem joint algorithm (CATIR) are proposed. In natural language processing related technologies, word vector features are extracted based on URLs, and the extracted URL information features and host information features are merged. The proposed CATIR algorithm uses CNN (Convolutional Neural Network) to obtain the deep local features in the data, uses the Attention mechanism to adjust the weights, and uses IndRNN (Independent Recurrent Neural Network) to obtain the global features in the data. The experimental results shows that the CATIR algorithm has significantly improved the accuracy of malicious URL detection based on traditional algorithms to 96.9%.


2017 ◽  
Vol 24 (4) ◽  
pp. 813-821 ◽  
Author(s):  
Anne Cocos ◽  
Alexander G Fiks ◽  
Aaron J Masino

Abstract Objective Social media is an important pharmacovigilance data source for adverse drug reaction (ADR) identification. Human review of social media data is infeasible due to data quantity, thus natural language processing techniques are necessary. Social media includes informal vocabulary and irregular grammar, which challenge natural language processing methods. Our objective is to develop a scalable, deep-learning approach that exceeds state-of-the-art ADR detection performance in social media. Materials and Methods We developed a recurrent neural network (RNN) model that labels words in an input sequence with ADR membership tags. The only input features are word-embedding vectors, which can be formed through task-independent pretraining or during ADR detection training. Results Our best-performing RNN model used pretrained word embeddings created from a large, non–domain-specific Twitter dataset. It achieved an approximate match F-measure of 0.755 for ADR identification on the dataset, compared to 0.631 for a baseline lexicon system and 0.65 for the state-of-the-art conditional random field model. Feature analysis indicated that semantic information in pretrained word embeddings boosted sensitivity and, combined with contextual awareness captured in the RNN, precision. Discussion Our model required no task-specific feature engineering, suggesting generalizability to additional sequence-labeling tasks. Learning curve analysis showed that our model reached optimal performance with fewer training examples than the other models. Conclusions ADR detection performance in social media is significantly improved by using a contextually aware model and word embeddings formed from large, unlabeled datasets. The approach reduces manual data-labeling requirements and is scalable to large social media datasets.


2018 ◽  
Vol 27 (06) ◽  
pp. 1850026
Author(s):  
Kyoungman Bae ◽  
Youngjoong Ko

The application of deep learning techniques in natural language processing tasks has been increased in recent years. Many studies have used the deep learning techniques to obtain a distributed representation of features. In particular, the convolutional neural network (CNN) with the distributed representation have subsequently been shown to be effective for the natural language processing tasks. This paper presents how to apply the CNN to speech-act classification. Then we analyze the experimental results on two issues, how to solve two problems about sparse speech-acts in train data and out of vocabulary, and how to utilize the advantages of CNN in the speech-act classification. As a result, we obtain the significant improved performances when CNN is applied to the speech-act classification.


Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 81
Author(s):  
Jianbin Xiong ◽  
Dezheng Yu ◽  
Shuangyin Liu ◽  
Lei Shu ◽  
Xiaochan Wang ◽  
...  

Plant phenotypic image recognition (PPIR) is an important branch of smart agriculture. In recent years, deep learning has achieved significant breakthroughs in image recognition. Consequently, PPIR technology that is based on deep learning is becoming increasingly popular. First, this paper introduces the development and application of PPIR technology, followed by its classification and analysis. Second, it presents the theory of four types of deep learning methods and their applications in PPIR. These methods include the convolutional neural network, deep belief network, recurrent neural network, and stacked autoencoder, and they are applied to identify plant species, diagnose plant diseases, etc. Finally, the difficulties and challenges of deep learning in PPIR are discussed.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Siyuan Zhao ◽  
Zhiwei Xu ◽  
Limin Liu ◽  
Mengjie Guo ◽  
Jing Yun

Convolutional neural network (CNN) has revolutionized the field of natural language processing, which is considerably efficient at semantics analysis that underlies difficult natural language processing problems in a variety of domains. The deceptive opinion detection is an important application of the existing CNN models. The detection mechanism based on CNN models has better self-adaptability and can effectively identify all kinds of deceptive opinions. Online opinions are quite short, varying in their types and content. In order to effectively identify deceptive opinions, we need to comprehensively study the characteristics of deceptive opinions and explore novel characteristics besides the textual semantics and emotional polarity that have been widely used in text analysis. In this paper, we optimize the convolutional neural network model by embedding the word order characteristics in its convolution layer and pooling layer, which makes convolutional neural network more suitable for short text classification and deceptive opinions detection. The TensorFlow-based experiments demonstrate that the proposed detection mechanism achieves more accurate deceptive opinion detection results.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 210 ◽  
Author(s):  
Zied Tayeb ◽  
Juri Fedjaev ◽  
Nejla Ghaboosi ◽  
Christoph Richter ◽  
Lukas Everding ◽  
...  

Non-invasive, electroencephalography (EEG)-based brain-computer interfaces (BCIs) on motor imagery movements translate the subject’s motor intention into control signals through classifying the EEG patterns caused by different imagination tasks, e.g., hand movements. This type of BCI has been widely studied and used as an alternative mode of communication and environmental control for disabled patients, such as those suffering from a brainstem stroke or a spinal cord injury (SCI). Notwithstanding the success of traditional machine learning methods in classifying EEG signals, these methods still rely on hand-crafted features. The extraction of such features is a difficult task due to the high non-stationarity of EEG signals, which is a major cause by the stagnating progress in classification performance. Remarkable advances in deep learning methods allow end-to-end learning without any feature engineering, which could benefit BCI motor imagery applications. We developed three deep learning models: (1) A long short-term memory (LSTM); (2) a spectrogram-based convolutional neural network model (CNN); and (3) a recurrent convolutional neural network (RCNN), for decoding motor imagery movements directly from raw EEG signals without (any manual) feature engineering. Results were evaluated on our own publicly available, EEG data collected from 20 subjects and on an existing dataset known as 2b EEG dataset from “BCI Competition IV”. Overall, better classification performance was achieved with deep learning models compared to state-of-the art machine learning techniques, which could chart a route ahead for developing new robust techniques for EEG signal decoding. We underpin this point by demonstrating the successful real-time control of a robotic arm using our CNN based BCI.


2021 ◽  
Author(s):  
Naveen Kumari ◽  
Rekha Bhatia

Abstract Facial emotion recognition extracts the human emotions from the images and videos. As such, it requires an algorithm to understand and model the relationships between faces and facial expressions, and to recognize human emotions. Recently, deep learning models are extensively utilized enhance the facial emotion recognition rate. However, the deep learning models suffer from the overfitting issue. Moreover, deep learning models perform poorly for images which have poor visibility and noise. Therefore, in this paper, a novel deep learning based facial emotion recognition tool is proposed. Initially, a joint trilateral filter is applied to the obtained dataset to remove the noise. Thereafter, contrast-limited adaptive histogram equalization (CLAHE) is applied to the filtered images to improve the visibility of images. Finally, a deep convolutional neural network is trained. Nadam optimizer is also utilized to optimize the cost function of deep convolutional neural networks. Experiments are achieved by using the benchmark dataset and competitive human emotion recognition models. Comparative analysis demonstrates that the proposed facial emotion recognition model performs considerably better compared to the competitive models.


10.2196/23230 ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. e23230
Author(s):  
Pei-Fu Chen ◽  
Ssu-Ming Wang ◽  
Wei-Chih Liao ◽  
Lu-Cheng Kuo ◽  
Kuan-Chih Chen ◽  
...  

Background The International Classification of Diseases (ICD) code is widely used as the reference in medical system and billing purposes. However, classifying diseases into ICD codes still mainly relies on humans reading a large amount of written material as the basis for coding. Coding is both laborious and time-consuming. Since the conversion of ICD-9 to ICD-10, the coding task became much more complicated, and deep learning– and natural language processing–related approaches have been studied to assist disease coders. Objective This paper aims at constructing a deep learning model for ICD-10 coding, where the model is meant to automatically determine the corresponding diagnosis and procedure codes based solely on free-text medical notes to improve accuracy and reduce human effort. Methods We used diagnosis records of the National Taiwan University Hospital as resources and apply natural language processing techniques, including global vectors, word to vectors, embeddings from language models, bidirectional encoder representations from transformers, and single head attention recurrent neural network, on the deep neural network architecture to implement ICD-10 auto-coding. Besides, we introduced the attention mechanism into the classification model to extract the keywords from diagnoses and visualize the coding reference for training freshmen in ICD-10. Sixty discharge notes were randomly selected to examine the change in the F1-score and the coding time by coders before and after using our model. Results In experiments on the medical data set of National Taiwan University Hospital, our prediction results revealed F1-scores of 0.715 and 0.618 for the ICD-10 Clinical Modification code and Procedure Coding System code, respectively, with a bidirectional encoder representations from transformers embedding approach in the Gated Recurrent Unit classification model. The well-trained models were applied on the ICD-10 web service for coding and training to ICD-10 users. With this service, coders can code with the F1-score significantly increased from a median of 0.832 to 0.922 (P<.05), but not in a reduced interval. Conclusions The proposed model significantly improved the F1-score but did not decrease the time consumed in coding by disease coders.


2021 ◽  
Author(s):  
Guangjie Li ◽  
Yi Tang ◽  
Biyi Yi ◽  
Xiang Zhang ◽  
Yan He

Code completion is one of the most useful features provided by advanced IDEs and is widely used by software developers. However, as a kind of code completion, recommending arguments for method calls is less used. Most of existing argument recommendation approaches provide a long list of syntactically correct candidate arguments, which is difficult for software engineers to select the correct arguments from the long list. To this end, we propose a deep learning based approach to recommending arguments instantly when programmers type in method names they intend to invoke. First, we extract context information from a large corpus of opensource applications. Second, we preprocess the extracted dataset, which involves natural language processing and data embedding. Third, we feed the preprocessed dataset to a specially designed convolutional neural network to rank and recommend actual arguments. With the resulting CNN model trained with sample applications, we can sort the candidate arguments in a reasonable order and recommend the first one as the correct argument. We evaluate the proposed approach on 100 open-source Java applications. Results suggest that the proposed approach outperforms the state-of-theart approaches in recommending arguments.


Author(s):  
Janjanam Prabhudas ◽  
C. H. Pradeep Reddy

The enormous increase of information along with the computational abilities of machines created innovative applications in natural language processing by invoking machine learning models. This chapter will project the trends of natural language processing by employing machine learning and its models in the context of text summarization. This chapter is organized to make the researcher understand technical perspectives regarding feature representation and their models to consider before applying on language-oriented tasks. Further, the present chapter revises the details of primary models of deep learning, its applications, and performance in the context of language processing. The primary focus of this chapter is to illustrate the technical research findings and gaps of text summarization based on deep learning along with state-of-the-art deep learning models for TS.


Sign in / Sign up

Export Citation Format

Share Document