PSVIII-10 Genome-wide CNV analysis unravels a deletion associated with parasite resistance in Florida native sheep

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 243-244
Author(s):  
Brittany N Diehl ◽  
Andres A Pech-Cervantes ◽  
Thomas H Terrill ◽  
Ibukun M Ogunade ◽  
Owen Rae ◽  
...  

Abstract Florida Native sheep is an indigenous breed from Florida and expresses superior parasite resistance. Previous candidate and genome wide association studies with Florida Native sheep have identified single nucleotide polymorphisms with additive and non-additive effects associated with parasite resistance. However, the role of other potential DNA variants, such as copy number variants (CNVs), controlling this complex trait have not been evaluated. The objective of the present study was to investigate the importance of CNVs on resistance to natural Haemonchus contortus infections in Florida Native sheep. A total of 200 sheep were evaluated in the present study. Phenotypic records included fecal egg count (FEC, eggs/gram), FAMACHA score, and packed cell volume (PCV, %). Sheep were genotyped using the GGP Ovine 50K SNP chip. The copy number analysis was used to identify CNVs using the univariate method. A total of 170 animals with CNVs and phenotypic data were used for the association testing. Association tests were carried out using single linear regression and Principal Component Analysis (PCA) correction to identify CNVs associated with FEC, FAMACHA, and PCV. To confirm our results, a second association testing using the correlation-trend test with PCA correction was performed. Significant CNVs were detected when their adjusted p-value was < 0.05 after FDR correction. A deletion CNV in chromosome 21 was associated with FEC. This DNA variant was located in intron 2 of RAB3IL gene and overlapped a QTL associated with changes in eosinophil number. Our study demonstrated for the first time that CNVs could be potentially involved with parasite resistance in this heritage sheep breed.

Author(s):  
Jack W. O’Sullivan ◽  
John P. A. Ioannidis

AbstractWith the establishment of large biobanks, discovery of single nucleotide polymorphism (SNPs) that are associated with various phenotypes has been accelerated. An open question is whether SNPs identified with genome-wide significance in earlier genome-wide association studies (GWAS) are replicated also in later GWAS conducted in biobanks. To address this question, the authors examined a publicly available GWAS database and identified two, independent GWAS on the same phenotype (an earlier, “discovery” GWAS and a later, replication GWAS done in the UK biobank). The analysis evaluated 136,318,924 SNPs (of which 6,289 had reached p<5e-8 in the discovery GWAS) from 4,397,962 participants across nine phenotypes. The overall replication rate was 85.0% and it was lower for binary than for quantitative phenotypes (58.1% versus 94.8% respectively). There was a18.0% decrease in SNP effect size for binary phenotypes, but a 12.0% increase for quantitative phenotypes. Using the discovery SNP effect size, phenotype trait (binary or quantitative), and discovery p-value, we built and validated a model that predicted SNP replication with area under the Receiver Operator Curve = 0.90. While non-replication may often reflect lack of power rather than genuine false-positive findings, these results provide insights about which discovered associations are likely to be seen again across subsequent GWAS.


2021 ◽  
Author(s):  
Ronald J Yurko ◽  
Kathryn Roeder ◽  
Bernie Devlin ◽  
Max G'Sell

In genome-wide association studies (GWAS), it has become commonplace to test millions of SNPs for phenotypic association. Gene-based testing can improve power to detect weak signal by reducing multiple testing and pooling signal strength. While such tests account for linkage disequilibrium (LD) structure of SNP alleles within each gene, current approaches do not capture LD of SNPs falling in different nearby genes, which can induce correlation of gene-based test statistics. We introduce an algorithm to account for this correlation. When a gene's test statistic is independent of others, it is assessed separately; when test statistics for nearby genes are strongly correlated, their SNPs are agglomerated and tested as a locus. To provide insight into SNPs and genes driving association within loci, we develop an interactive visualization tool to explore localized signal. We demonstrate our approach in the context of weakly powered GWAS for autism spectrum disorder, which is contrasted to more highly powered GWAS for schizophrenia and educational attainment. To increase power for these analyses, especially those for autism, we use adaptive p-value thresholding (AdaPT), guided by high-dimensional metadata modeled with gradient boosted trees, highlighting when and how it can be most useful. Notably our workflow is based on summary statistics.


Thorax ◽  
2021 ◽  
pp. thoraxjnl-2020-215742
Author(s):  
Sanghun Lee ◽  
Jessica Lasky-Su ◽  
Sungho Won ◽  
Cecelia Laurie ◽  
Juan Carlos Celedón ◽  
...  

Most genome-wide association studies of obesity and body mass index (BMI) have so far assumed an additive mode of inheritance in their analysis, although association testing supports a recessive effect for some of the established loci, for example, rs1421085 in FTO. In two whole-genome sequencing (WGS) studies of children with asthma and their parents (892 Costa Rican trios and 286 North American trios), we discovered an association between a locus (rs9292139) in LOC102724122 and BMI that reaches genome-wide significance under a recessive model in the combined analysis. As the association does not achieve significance under an additive model, our finding illustrates the benefits of the recessive model in WGS analyses.


2019 ◽  
Vol 116 (4) ◽  
pp. 1195-1200 ◽  
Author(s):  
Daniel J. Wilson

Analysis of “big data” frequently involves statistical comparison of millions of competing hypotheses to discover hidden processes underlying observed patterns of data, for example, in the search for genetic determinants of disease in genome-wide association studies (GWAS). Controlling the familywise error rate (FWER) is considered the strongest protection against false positives but makes it difficult to reach the multiple testing-corrected significance threshold. Here, I introduce the harmonic mean p-value (HMP), which controls the FWER while greatly improving statistical power by combining dependent tests using generalized central limit theorem. I show that the HMP effortlessly combines information to detect statistically significant signals among groups of individually nonsignificant hypotheses in examples of a human GWAS for neuroticism and a joint human–pathogen GWAS for hepatitis C viral load. The HMP simultaneously tests all ways to group hypotheses, allowing the smallest groups of hypotheses that retain significance to be sought. The power of the HMP to detect significant hypothesis groups is greater than the power of the Benjamini–Hochberg procedure to detect significant hypotheses, although the latter only controls the weaker false discovery rate (FDR). The HMP has broad implications for the analysis of large datasets, because it enhances the potential for scientific discovery.


Cosmetics ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 49
Author(s):  
Miranda A. Farage ◽  
Yunxuan Jiang ◽  
Jay P. Tiesman ◽  
Pierre Fontanillas ◽  
Rosemarie Osborne

Individuals suffering from sensitive skin often have other skin conditions and/or diseases, such as fair skin, freckles, rosacea, or atopic dermatitis. Genome-wide association studies (GWAS) have been performed for some of these conditions, but not for sensitive skin. In this study, a total of 23,426 unrelated participants of European ancestry from the 23andMe database were evaluated for self-declared sensitive skin, other skin conditions, and diseases using an online questionnaire format. Responders were separated into two groups: those who declared they had sensitive skin (n = 8971) and those who declared their skin was not sensitive (controls, n = 14,455). A GWAS of sensitive skin individuals identified three genome-wide significance loci (p-value < 5 × 10−8) and seven suggestive loci (p-value < 1 × 10−6). Of the three most significant loci, all have been associated with pigmentation and two have been associated with acne.


2019 ◽  
Author(s):  
Margaret A Taub ◽  
Matthew P Conomos ◽  
Rebecca Keener ◽  
Kruthika R Iyer ◽  
Joshua S Weinstock ◽  
...  

ABSTRACTTelomeres shorten in replicating somatic cells, and telomere length (TL) is associated with age-related diseases 1,2. To date, 17 genome-wide association studies (GWAS) have identified 25 loci for leukocyte TL 3–19, but were limited to European and Asian ancestry individuals and relied on laboratory assays of TL. In this study from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program, we used whole genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of TL in n=109,122 trans-ethnic (European, African, Asian and Hispanic/Latino) individuals. We identified 59 sentinel variants (p-value <5×10−9) from 36 loci (20 novel, 13 replicated in external datasets). There was little evidence of effect heterogeneity across populations, and 10 loci had >1 independent signal. Fine-mapping at OBFC1 indicated the independent signals colocalized with cell-type specific eQTLs for OBFC1 (STN1). We further identified two novel genes, DCLRE1B (SNM1B) and PARN, using a multi-variant gene-based approach.


2021 ◽  
Author(s):  
Weihua Meng ◽  
Parminder Reel ◽  
Charvi Nangia ◽  
Aravind Rajendrakumar ◽  
Harry Hebert ◽  
...  

Headache is one of the commonest complaints that doctors need to address in clinical settings. The genetic mechanisms of different types of headache are not well understood. In this study, we performed a meta-analysis of genome-wide association studies (GWAS) on the self-reported headache phenotype from the UK Biobank cohort and the self-reported migraine phenotype from the 23andMe resource using the metaUSAT for genetically correlated phenotypes (N=397,385). We identified 38 loci for headaches, of which 34 loci have been reported before and 4 loci were newly identified. The LRP1-STAT6-SDR9C7 region in chromosome 12 was the most significantly associated locus with a leading P value of 1.24 x 10-62 of rs11172113. The ONECUT2 gene locus in chromosome 18 was the strongest signal among the 4 new loci with a P value of 1.29 x 10-9 of rs673939. Our study demonstrated that the genetically correlated phenotypes of self-reported headache and self-reported migraine can be meta-analysed together in theory and in practice to boost study power to identify more new variants for headaches. This study has paved way for a large GWAS meta-analysis study involving cohorts of different, though genetically correlated headache phenotypes.


2017 ◽  
Author(s):  
Jose A. Lozano ◽  
Farhad Hormozdiari ◽  
Jong Wha (Joanne) Joo ◽  
Buhm Han ◽  
Eleazar Eskin

AbstractGenome-wide association studies (GWAS) have discovered thousands of variants involved in common human diseases. In these studies, frequencies of genetic variants are compared between a cohort of individuals with a disease (cases) and a cohort of healthy individuals (controls). Any variant that has a significantly different frequency between the two cohorts is considered an associated variant. A challenge in the analysis of GWAS studies is the fact that human population history causes nearby genetic variants in the genome to be correlated with each other. In this review, we demonstrate how to utilize the multivariate normal (MVN) distribution to explicitly take into account the correlation between genetic variants in a comprehensive framework for analysis of GWAS. We show how the MVN framework can be applied to perform association testing, correct for multiple hypothesis testing, estimate statistical power, and perform fine mapping and imputation.


Sign in / Sign up

Export Citation Format

Share Document