scholarly journals PSV-10 Effects of storing three phytase sources for 90 days under high temperature and humidity on phytase stability, growth performance, and bone mineralization of nursery pigs

2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 194-195
Author(s):  
Carine M Vier ◽  
Mariana Boscato Menegat ◽  
Kiah M Gourley ◽  
Steve S Dritz ◽  
Mike D Tokach ◽  
...  

Abstract This study evaluated storing 3 commercial phytases for 90 d in an environmental chamber set at 29.4°C and 75% humidity on phytase stability and nursery pig growth performance and bone mineralization. The phytases [HiPhos GT (20,000 FYT/g, DSM Nutritional Products, Parsippany, NJ); Axtra Phy TPT (20,000 FTU/g, Dupont, Wilmington, DE), and Quantum Blue G (40,000 FTU/g, AB Vista, Plantation, FL)] were kept as pure forms or blended in a vitamin-trace mineral (VTM) premix and sampled on d 0, 30, 60, and 90 of storage. Regardless of source and form, analyzed phytase activity decreased (linear, P < 0.001) as storage increased. Afterwards, 300 nursery pigs (11.7 kg BW) were assigned to 1 of 8 treatments in a RCBD with 4-5 pigs/pen and 8 pens/treatment. Treatments included a negative (NC, 0.12% aP) and positive control (PC, 0.27% aP) without phytase; or NC with added phytase to provide 0.15% aP (1,000, 651 and 500 FTU/kg for HiPhos, Axtra Phy, and Quantum Blue, respectively). Negative control with added phytase treatments were manufactured with each phytase source previously stored in pure form or VTM premix for 90d. Pigs fed PC had greater (P < 0.001) ADG compared to pigs fed Axtra Phy stored in VTM or NC. Feed intake was similar for PC, phytases stored in pure forms, and HiPhos and Quantum Blue stored in VTM, and greater (P < 0.001) than pigs fed NC. Pigs fed PC or HiPhos stored in pure form had improved (P < 0.001) G:F compared to pigs fed NC. Bone mineralization was greater (P < 0.001) for pigs fed PC compared to NC, phytases stored in VTM, and Axtra Phy and Quantum Blue stored in pure form. Regardless of source and form, phytase activity decreased as storage increased. In this study, bone ash was reduced when phytases were stored for 90d in a VTM compared to the PC.

2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 85-86
Author(s):  
Dalton Humphrey ◽  
Spenser Becker ◽  
Jason Lee ◽  
Keith Haydon ◽  
Laura L Greiner

Abstract Four hundred and eighty (PIC 337 X 1050, PIC Genus, Hendersonville, TN) pigs were used to evaluate a novel threonine source (ThrPro, CJ America-Bio, Fort Dodge, IA) for nursery pigs from approximately 7 kg to 20 kg. At weaning, pigs were sorted by gender and fed a common diet for one week. Upon completion of the first week, pigs were sorted into randomized complete blocks, equalized by weight, within 16 replications. Pigs were allocated to one of three dietary treatments: positive control (POS)-SID LYS:THR 0.60, negative control (NEG)-SID LYS:THR ≤0.46 and alternative threonine source (TEST)-SID LYS:THR 0.60. All other nutrients met or exceeded the NRC (2012) recommendations. Growth and intake data were analyzed using PROC MIXED procedure in SAS. The experimental unit was the pen. During the first 14 days, pigs fed TEST had similar ADG (0.417 vs. 0.414 kg/d, P=0.81) and G:F (0.977 vs. 1.030, P=0.18) compared to POS, and increased ADG (0.417 vs. 0.387 kg/d, P=0.01) and G:F (0.977 vs. 0.898, P=0.05) compared to NEG. Over days 14-28, pigs fed TEST had similar ADG (0.523 vs. 0.532 kg/d, P=0.49) and G:F (0.712 vs. 0.707, P=0.71) compared to POS, and increased ADG (0.523 vs. 0.479 kg/d, P=0.002) and G:F (0.712 vs. 0.627, P&lt; 0.0001) compared to NEG. Overall (d 0 to 28), pigs fed TEST had similar ADG (0.466 vs. 0.474 kg/d, P=0.48) and G:F (0.808 vs. 0.816, P=0.55) compared to POS, and increased ADG (0.466 vs. 0.433 kg/d, P=0.002) and G:F (0.808 vs. 0.725, P&lt; 0.0001) compared to NEG. ADFI was not significantly different across treatments for the entirety of the study. In conclusion, the replacement of L-threonine with a novel threonine source resulted in similar growth performance in nursery pigs from approximately 7 kg to 20 kg.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 22-23
Author(s):  
Richard A Mudarra ◽  
Tsung Cheng Cheng Tsai ◽  
Kristopher Bottoms ◽  
Thomas S Shieh ◽  
Casey Bradly ◽  
...  

Abstract To evaluate the effect of bioactive peptide (P) in combination with high level of zinc (HZ) or acidifiers on growth performance, complete blood cell counts (CBC) and nutrient digestibility in nursery pigs, a total of 288 weaned pigs (PIC1050xDNA600) were stratified by initial BW within gender and allotted to 1of 7 treatments. Treatments for phase 1&2 were: 1) nutrient adequate positive control with HZ (PC), 2) nutrient deficient negative control with HZ (NC, -0.13% SID Lysine by reducing fish meal), 3) NC+0.25% peptide (0.25PZ), 4) NC+0.5% peptide (0.5PZ), 5) NC+0.25% peptide with standard zinc (0.25P), 6) NC+0.5% peptide with standard zinc (0.5P), 7) as 5 + 0.1% sodium butyrate and 0.5% benzoic acid (PSB). All pigs were fed a common low Zn diet (197 ppm) during phase 3. The whole blood was obtained from a close-to-average pen-BW pig repeatedly at weaning, and at the end of phase 2 and 3 to determine CBC. Titanium dioxide was used as an indigestible marker to determine nutrient digestibility. Data were analyzed using the Mixed procedures of SAS as a RCBD with treatment as fixed effect, and BW block as random effect. In overall phase 1&2, pigs fed PSB had similar ADG and BW when compared to pigs fed 0.25PZ and both were greater than NC pigs (Table 1). With the same inclusion rate of peptide, pigs fed a high zinc diet had greater BW and ADG than pigs fed a standard zinc diet. PSB pigs had the greatest G:F ratio and nitrogen digestibility among treatments. Increasing peptide in high zinc diets gradually decreased Neutrophil-to-lymphocyte ratio. This study indicates that the improvement in growth performance from pigs fed peptide is pharmaceutical zinc dependent and acidifiers can be an alternative to replace ZnO without affecting growth performance.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 197-198
Author(s):  
Jacob A Richert ◽  
Jorge Y P Palencia ◽  
Clayton S Chastain ◽  
Morgan T Thayer ◽  
Brian T Richert ◽  
...  

Abstract The objective of this study was to determine the optimal level of Cordyceps mushroom powder inclusion in diets for nursery pigs. One-hundred sixty crossbred pigs [(Duroc × (York × Landrace)] weaned at 18.8 d of age and weighing an average of 5.94 kg were used in a 35 day, 4 phase growth trial to evaluate Cordyceps mushroom powder as potential alternative to carbadox in nursery pig diets. Pigs were allotted by weight, sex, litter, and assigned to body weight (BW) blocks. Within BW blocks, sex ratios were constant in each pen. Each pen within a BW block was randomly assigned a dietary treatment. Growth performance was analyzed as a RCB design using BW, ADG, ADFI, G:F using GLM procedure of SAS 9.4. There were 5 or 6 pigs/pen and 6 pens/treatment. Five diets were used in the study: a negative diet or a positive control (Carbadox, 55 ppm); 300 or 600 ppm mushroom powder, and a step down treatment (900, 900, 450, 300, 150 ppm mushroom powder during weeks 1 through 5, respectively). At various points of the study, pigs fed the 300 ppm and the step-down mushroom powder treatments tended to have improved (P &lt; 0.10) growth performance compared with those fed the negative control diet. During Phase 4 of the study, pigs fed Carbadox had greater ADG (P &lt; 0.02) and improved feed efficiency (P &lt; 0.09) compared to pigs fed the negative control diet. However, overall data showed that there were no statistical differences among treatments (P &gt; 0.05). In summary, pigs fed 300 ppm mushroom powder or the step-down treatment showed comparable growth performance to pigs fed Carbadox. However, future research is needed under a greater disease challenge to examine mushroom powder’s full potential as an alternative to antibiotics.


2020 ◽  
Vol 4 (2) ◽  
pp. 602-615
Author(s):  
Kevin Jerez-Bogota ◽  
Cristian Sánchez ◽  
Jimena Ibagon ◽  
Maamer Jlali ◽  
Pierre Cozannet ◽  
...  

Abstract A study was conducted to determine the effects of supplementing corn–soybean meal-based diets with a multienzyme on growth performance, bone mineralization, apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of nutrients of growing pigs. A total of 276 pigs (body weight [BW] = 33.99 ± 4.3 kg) were housed by sex in 45 pens of 6 or 7 pigs and fed 5 diets (9 pens/diet) in a randomized complete block design. Diets were positive control (PC); and negative control 1 (NC1) or negative control 2 (NC2) without or with multienzyme. The multienzyme used supplied at least 1,800, 1,244, 6,600, and 1,000 units of xylanase, β-glucanase, arabinofuranosidase, and phytase per kilogram of diet, respectively. The PC diet was adequate in all nutrients according to NRC recommendations and had greater digestible P content than NC1 or NC2 diet by 0.134 percentage points. The PC diet had greater net energy (NE) and standardized ileal digestible amino acids (AA) content than NC1 diet by 3%, and than NC2 diet by 5%. The diets were fed in 4 phases based on BW: Phase 1: 34–50 kg; Phase 2: 50–75 kg; Phase 3: 75–100 kg; and Phase 4: 100–120 kg. Nutrient digestibility and bone mineralization were determined at the end of Phase 1. Overall (34–120 kg BW), pigs fed the PC and NC1 diets did not differ in average daily gain (ADG) and average daily feed intake. Pigs fed NC2 diet had lower (P &lt; 0.05) ADG and gain-to-feed ratio (G:F) than those fed PC diet. Pigs fed PC diet had greater (P &lt; 0.05) bone ash content and ATTD of P than those fed NC1 diet. The ATTD of GE for PC diet was greater (P &lt; 0.05) than that for NC2 diet, and tended to be greater (P &lt; 0.10) than that for NC1 diet. Multienzyme interacted (P &lt; 0.05) with negative control diet type on overall ADG and AID of GE such that multienzyme did not affect overall ADG and AID of GE for the NC1 diet, but increased (P &lt; 0.05) overall ADG and AID of GE for NC2 diet by 5.09 and 8.74%, respectively. Multienzyme did not interact with negative control diet type on overall G:F, bone ash content, AID of AA, and ATTD of nutrients. Multienzyme increased (P &lt; 0.05) overall G:F, AID of methionine, ATTD of GE and P, and tended to increase (P = 0.056) bone ash content. The ADG, bone ash content, and ATTD of GE and P for the multienzyme-supplemented diets were similar to (P &gt; 0.10) PC diet. Thus, NE and digestible AA and P can be lowered by ≤5% in multienzyme-supplemented diets without effects on growth performance and bone ash of pigs.


2019 ◽  
Vol 97 (9) ◽  
pp. 3907-3919 ◽  
Author(s):  
Hang Lu ◽  
Imke Kühn ◽  
Mike R Bedford ◽  
Hayley Whitfield ◽  
Charles Brearley ◽  
...  

Abstract The objective of this present study was to determine the effects of phytase dosing on growth performance, mineral digestibility, phytate breakdown, and the level of glucose transporter type 4 (GLUT4) in muscle plasma membranes of weanling pigs. A total of 160 barrows were used in a randomized completely block design and assigned to 4 treatments for a 7-wk study. Depending on the feeding phase, diets differed in dietary calcium (Ca) and phosphorus (P) levels (positive control [PC]: 8 to 6.8g/kg Ca; 7.3 to 6.3 g/kg P; negative control [NC]: 5.5 to 5.2 g/kg Ca; 5.4 to 4.7 g/kg P). NC diets were supplemented with phytase at 0 (NC); 500 (NC + 500 FTU); or 2,000 FTU/kg (NC + 2,000 FTU) phytase units/kg. Blood was collected after fasting (day 48) or feeding (day 49) for measurement of plasma inositol concentrations. On day 49, 2 pigs per pen were euthanized, and duodenal and ileal digesta samples were collected to determine inositol phosphates (InsP6-2) concentrations. High phytase supplementation increased BW on days 21, 35, and 49 (P < 0.05). Over the entire feeding period, ADG, ADFI, and feed efficiency were increased by NC + 2,000 FTU compared with the other treatments (P < 0.05). Postprandial plasma inositol concentration was increased in NC + 2,000 (P < 0.01), but there was only a tendency (P = 0.06) of a higher fasting plasma inositol concentration in this group. Inositol concentrations in the portal vein plasma (day 49) were not different among treatments. Duodenal digesta InsP5 and InsP6 concentrations were similar in PC and NC, but higher in these 2 treatments (P < 0.05) than those supplemented with phytase. Phytase supplementation decreased InsP6-4, resulting in increased InsP3-2 and myo-inositol concentrations. Similar effects were found in ileal contents. Compared with NC, phytase supplementation resulted in greater cumulative InsP6-2 disappearance (93.6% vs. 72.8% vs. 25.0%, for NC + 2,000 FTU, NC + 500 FTU and NC, respectively, P < 0.01) till the distal ileum. Longissimus dorsi muscle plasma membrane GLUT4 concentration was increased by NC + 2,000 FTU (P < 0.01) compared with NC. In summary, high phytase supplementation increased growth performance of nursery pigs. The higher myo-inositol release from phytate could contribute to the increased expression of GLUT4 in muscle plasma membranes. Further investigation is needed to determine whether this is associated with enhanced cellular glucose uptake and utilization.


1994 ◽  
Vol 3 (5) ◽  
pp. 457-466
Author(s):  
Tuomo Koskinen ◽  
Jari Piironen ◽  
Tiina Hakonen

Three trials were conducted on a total of 5100 broiler chicks (0-5.5 weeks) to study the effects of different microbial phytase (Aspergillus niger) supplementations (250-1000 phytase units = PU/g) on the performance and bone mineralization of birds and on the utilization of phosphorus compared with the effects of mineral P additions as dicalcium phosphate. The basal diets (negative controls) were principally composed of soya bean meal (SBM) and grain (wheat, barley, oats) supplemented with up to 0.10% mineral P; the positive control diets were supplemented with 0.24-0.30% mineral P. Compared with the negative control groups, which were fed diets with 0.05% mineral P either during the whole rearing period or during the starting period only, phytase addition increased live weight by 4-7% and feed intake by 3-9% (Trials 1 and 2). Tibia values indicated that with low mineral P supplementations (0.05 and 0.10%), phytase additions have a non-significant effect on bone mineralization. If mineral P is not added, the tibia values show a marked response to phytase (Trial 3). Utilization of P increased from 50.9% to 60.0% when phytase (1000 PU/g) was added to the diets without mineral P supplementation (Trial 3). Utilization of P was only 34.5% in the positive control diet (0.3% mineral P). The results were obviously affected by the intrinsic phytase activity in grain and the dietary calcium level, and suggest that, in SBM-grain-based diets with very low (0.05%) or no mineral P supplementation, weight gain can be increased by adding phytase up to 1000 PU/g. This supplemented phytase activity is apparently sufficient for adequate bone mineralization.


Author(s):  
Kelsey L Batson ◽  
Hilda I Calderón ◽  
Mike D Tokach ◽  
Jason C Woodworth ◽  
Robert D Goodband ◽  
...  

Abstract Two experiments determined the effects of crude protein (CP) in diets containing coarse wheat bran (CWB) with or without pharmacological levels of Zn on weanling pig growth performance. In Exp. 1, treatments included a positive control (21% CP) with 3,000 mg/kg Zn in phase 1 and 2,000 mg/kg in phase 2; negative control (21% CP) with 110 mg/kg Zn, and four diets containing 4% CWB and 110 mg/kg Zn formulated to 21, 19.5, 18, or 16.5% CP. The three diets with 21% CP and CWB contained 1.40% standardized ileal digestible (SID) Lys in phase 1 and 1.35% SID Lys in phase 2, while the 19.5, 18, and 16.5% CP diets contained 1.35, 1.25 and 1.20% Lys, respectively. Pigs fed the diet containing pharmacological Zn had increased (P &lt; 0.05) ADG and G:F compared to the negative control and the 21% CP CWB diet. Reducing CP decreased ADG and G:F (linear, P = 0.002). In Exp. 2, diets consisted of: 1) positive control with 2,000 mg/kg of Zn and 21% CP (1.35% SID Lys); 2) 110 mg/kg Zn and 21% CP; and 3 diets with 110 mg/kg Zn and 18% CP with 3) 1.2% SID Lys; 4) 1.35% SID Lys by the addition of crystalline AA, and 5) diet 4 with added non-essential AA. Pigs fed 21% CP with Zn had increased (P = 0.001) ADG compared to those fed 18% CP (1.35% SID Lys) or 1.2% SID Lys. In summary, added Zn improved growth performance, but reducing CP did not.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 43-43
Author(s):  
Madison R Wensley ◽  
Jason C Woodworth ◽  
Joel M DeRouchey ◽  
Steve S Dritz ◽  
Mike D Tokach ◽  
...  

Abstract A total of 320 barrows (DNA 200×400, initially 11.3 ± 0.65 kg BW) were used in a 21-d growth trial evaluating the effects of feeding Trp biomass (CJ America-Bio, Downers Grove, IL) as a source of Trp on nursery pig performance. Pigs were weaned at approximately 21 d of age, placed in pens based on initial BW, and fed a common diet. On d 21 after weaning, pigs were weighed and pens were allotted to 1 of 4 dietary treatments with 5 pigs/pen and 16 replicates/treatment. Dietary treatments included a negative control (16% SID Trp:Lys), positive control (21% SID Trp:Lys from crystalline L-Trp), or diets containing Trp biomass to provide 21 or 23.5% SID Trp:Lys (included at 0.104 or 0.156% of the diet, respectively). Diets were corn-soybean meal based and contained 1.25% SID Lys with other AA set to meet or exceed NRC (2012) requirement estimates. The Trp biomass contained 69% Trp. Growth data were analyzed as a randomized complete block design using PROC GLIMMIX of SAS with pen as the experimental unit. Overall (d 0 to 21) pigs fed 21% Trp from L-Trp or Trp biomass had increased (P < 0.05) ADG compared to the control, with pigs fed the 23.5% SID Trp biomass intermediate. Pigs fed the 21% Trp from Trp biomass had improved (P < 0.05) G:F compared to the control with others intermediate. In conclusion, Trp biomass is a viable alternative to crystalline Trp, but further evaluation at higher inclusion levels is needed.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 78-79
Author(s):  
Zhong-Xing Rao ◽  
Mike D Tokach ◽  
Steve S Dritz ◽  
Jason C Woodworth ◽  
Joel M DeRouchey ◽  
...  

Abstract Two experiments were conducted to determine the efficacy of commercial products on growth performance of nursery pigs fed high fumonisin diets. In Exp. 1,350 pigs (241 × 600; DNA; initially 9.9 kg) were used with 5 pigs per pen and 14 pens per treatment. Five dietary treatments consisted of a positive control (low fumonisin, 4 ppm fumonisin; FB1 + FB2), negative control (50 ppm fumonisin;) and the negative control with one of three products (0.3% of Kallsil Dry, Kemin Industries Inc., Des Moines, IA; 0.3% of Feed Aid Wide Spectrum, NutriQuest, Mason City, IA; 0.17% of Biofix Select Pro, Biomin America Inc., Overland Park, KS). Diets were fed for 14 d. Pens were assigned to treatments in a randomized complete block design with initial weight as the blocking factor. Data were analyzed using nlme package in R program (version 3.5.2) with pen as experimental unit. Pigs fed the negative control, or diets with Kallsil Dry or Feed Aid had decreased (P&lt; 0.05) ADG, ADFI, and G:F compared with those fed the positive control and diet with Biofix. Pigs fed the positive control diet had decreased (P&lt; 0.05) d 14 serum sphinganine to sphingosine (Sa:So) ratio than those fed other diets. In Exp. 2, 300 pigs (241 × 600; initially 10.4 kg) were used and fed experimental diets for 28 d. Procedures were similar to Exp. 1 except there were 12 replicates per treatment and diets contained 30 ppm fumonisin. Pigs fed the negative control, or diets with Kallsil Dry or Feed Aid had decreased (P&lt; 0.05) ADG and G:F, and greater (P&lt; 0.05) d 14 and 28 Sa:So ratios compared with the positive control and diet with Biofix. In summary, adding Biofix to high fumonisin diets mitigated the negative effects of fumonisin while Kallsil Dry and Feed Aid did not.


Sign in / Sign up

Export Citation Format

Share Document