Analysis of GPI-anchored proteins involved in germline stem cell proliferation in the Caenorhabditis elegans germline stem cell niche

2020 ◽  
Vol 168 (6) ◽  
pp. 589-602
Author(s):  
Marika Rikitake ◽  
Ayako Matsuda ◽  
Daisuke Murata ◽  
Katsufumi Dejima ◽  
Kazuko H Nomura ◽  
...  

Abstract Stem cells divide and undergo self-renewal depending on the signals received from the stem cell niche. This phenomenon is indispensable to maintain tissues and organs in individuals. However, not all the molecular factors and mechanisms of self-renewal are known. In our previous study, we reported that glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) synthesized in the distal tip cells (DTCs; the stem cell niche) are essential for germline stem cell proliferation in Caenorhabditis elegans. Here, we characterized the GPI-APs required for proliferation. We selected and verified the candidate GPI-APs synthesized in DTCs by RNA interference screening and found that F57F4.3 (GFI-1), F57F4.4 and F54E2.1 are necessary for germline proliferation. These proteins are likely involved in the same pathway for proliferation and activated by the transcription factor PQM-1. We further provided evidence suggesting that these GPI-APs act through fatty acid remodelling of the GPI anchor, which is essential for association with lipid rafts. These findings demonstrated that GPI-APs, particularly F57F4.3/4 and F54E2.1, synthesized in the germline stem cell niche are located in lipid rafts and involved in promoting germline stem cell proliferation in C. elegans. The findings may thus shed light on the mechanisms by which GPI-APs regulate stem cell self-renewal.

Science ◽  
2011 ◽  
Vol 334 (6058) ◽  
pp. 990-992 ◽  
Author(s):  
E. M. Fast ◽  
M. E. Toomey ◽  
K. Panaram ◽  
D. Desjardins ◽  
E. D. Kolaczyk ◽  
...  

2008 ◽  
Vol 180 (4) ◽  
pp. 721-728 ◽  
Author(s):  
Liwei Wang ◽  
Zhouhua Li ◽  
Yu Cai

The stem cell niche, formed by surrounding stromal cells, provides extrinsic signals that maintain stem cell self-renewal. However, it remains unclear how these extrinsic signals are regulated. In the Drosophila female germline stem cell (GSC) niche, Decapentaplegic (DPP) is an important niche factor for GSC self-renewal. The exact source of the DPP and how its transcription is regulated in this niche remain unclear. We show that dpp is expressed in somatic cells of the niche including the cap cells, a subtype of niche cells. Furthermore, our data show that the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway positively regulates dpp expression in the cap cells, suggesting that JAK/STAT activity is required in somatic niche cells to prevent precocious GSC differentiation. Our data suggest that the JAK/STAT pathway functions downstream/independently of cap cell formation induced by Notch signaling. JAK/STAT signaling may also regulate dpp expression in the male GSC niche, suggesting a common origin of female and male GSC niches.


2016 ◽  
Vol 417 (1) ◽  
pp. 50-62 ◽  
Author(s):  
Violaine I. Mottier-Pavie ◽  
Victor Palacios ◽  
Susan Eliazer ◽  
Shane Scoggin ◽  
Michael Buszczak

2011 ◽  
Vol 2 (1) ◽  
Author(s):  
Marcus Michel ◽  
Isabel Raabe ◽  
Adam P. Kupinski ◽  
Raquel Pérez-Palencia ◽  
Christian Bökel

Sign in / Sign up

Export Citation Format

Share Document