niche formation
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 69)

H-INDEX

35
(FIVE YEARS 8)

Nanomedicine ◽  
2021 ◽  
Author(s):  
Abdus Subhan ◽  
Sara Aly Attia ◽  
Vladimir P Torchilin

Metastasis is considered the major cause of unsuccessful cancer therapy. The metastatic development requires tumor cells to leave their initial site, circulate in the blood stream, acclimate to new cellular environments at a remote secondary site and endure there. There are several steps in metastasis, including invasion, intravasation, circulation, extravasation, premetastatic niche formation, micrometastasis and metastatic colonization. siRNA therapeutics are appreciated for their usefulness in treatment of cancer metastasis. However, siRNA therapy as a single therapy may not be a sufficient option for control of metastasis. By combining siRNA with targeting, functional agents or small molecule drugs have shown potential effects that enhance therapeutic effectiveness. This review addresses multidrug resistance and metastasis in breast and ovarian cancers and highlights drug delivery strategies using siRNA therapeutics.


2021 ◽  
Author(s):  
Xiaoqing Han ◽  
Luopeng Bi ◽  
Yunyun Wu ◽  
Jiao Yan ◽  
Xiaqing Wu ◽  
...  

Abstract Premetastatic niche (PMN) is a prerequisite for initiation of tumor metastasis. Targeting prevention of PMN formation in distant organs is becoming a promising strategy to suppress metastasis of primary tumor. Based on “organotropic metastasis”, melanoma tends to metastasize to lungs, where granulocytic myeloid-derived suppressor cells (G-MDSCs) recruitment in lungs significantly contributes to the PMN formation. Herein, functional exosomes (GExoI) were designed to present pulmonary targeting peptide GFE1 on the membrane and load PI3Kγ inhibitor (IPI549) inside, aiming at suppressing postoperative lung metastasis of melanoma. In postoperative mice model, intravenously injected GExoI could significantly accumulate in lungs and release IPI549 to block G-MDSCs recruitment through interfering with CXCLs/CXCR2/PI3Kγ signaling. The increased percentages of CD4+ T cells and CD8+ T cells in lungs could transform microenvironment from immunosuppression to immunostimulation, leading to metastasis inhibition. This study suggests an effective anti-metastasis strategy of targeting prevention of PMN formation through specifically blocking G-MDSCs recruitment.


Author(s):  
Zhiying Yue ◽  
Xin Niu ◽  
Zengjin Yuan ◽  
Qin Qin ◽  
Wenhao Jiang ◽  
...  

Author(s):  
Clarel Antoine ◽  
Jessica A. Meyer ◽  
Jenna S. Silverstein ◽  
Jameshisa Alexander ◽  
Cheongeun Oh ◽  
...  

2021 ◽  
Vol 9 (10) ◽  
pp. e002875
Author(s):  
Chenghui Yang ◽  
Zhen Wang ◽  
Lili Li ◽  
Zhigang Zhang ◽  
Xiaoyan Jin ◽  
...  

BackgroundNeutrophils-linked premetastatic niche plays a key role in tumor metastasis, but not much is known about the heterogeneity and diverse role of neutrophils in niche formation. Our study focuses on the existence and biological function of a rarely delved subset of neutrophils, named as tumor-associated aged neutrophils (Naged, CXCR4+CD62Llow), involved in premetastatic niche formation during breast cancer metastasis.MethodsWe explored the distributions of Naged in 206 patients and mice models (4T1 and MMTV-PyMT) by flow cytometry. The ability of Naged to form neutrophil extracellular traps (NETs) and promote tumor metastasis in patients and mice was determined by polychromatic immunohistochemistry, scanning electron microscopy and real-time video detection. Furthermore, the differences among tumor-associated Naged, Non-Naged and inflammation-associated aged neutrophils were compared by transcriptome, the biological characteristics of Naged were comprehensively analyzed from the perspectives of morphology, the metabolic capacity and mitochondrial function were investigated by Seahorse, co-immunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP) and transmission electron microscopy (TEM). Finally, 120 patients’ sample were applied to confirm the acceleration of Naged formation through secreted NAMPT, and the importance of blocking this pathway in mice was evaluated.ResultsWe find that Naged accumulate in the lung premetastatic niche at early stage of breast tumorigenesis in multiple mice models and also exist in peripheral blood and metastatic lung of patients with breast cancer. Naged exhibit distinct cell marker and morphological feature of oversegmented nuclei. Further transcriptome reveals that Naged are completely different from those of Non-Aged or inflammation-associated aged neutrophils and illustrates that the key transcription factor SIRT1 in Naged is the core to maintain their lifespan via mitophagy for their function. The responsible mechanism is that SIRT1 can induce the opening of mitochondrial permeability transition pore channels to release mitochondrial DNA and lead to the mitochondria-dependent vital NETs formation, rather than traditional Cit-Histone H3 dependent fatal-NETs. Further mechanically investigation found tumor derived NAMPT could induce Naged formation. Additionally, therapeutic interventions of Naged and its formation-linked pathways could effectively decrease breast cancer lung metastasis.ConclusionsNaged exerts a vital role in breast cancer lung metastasis, and strategies targeting SIRT1-Naged-NETs axis show promise for translational application.


Author(s):  
Christopher R. Silvers ◽  
Edward M. Messing ◽  
Hiroshi Miyamoto ◽  
Yi-Fen Lee

Abstract Background Markers of stromal activation at future metastatic sites may have prognostic value and may allow clinicians to identify and abolish the pre-metastatic niche to prevent metastasis. In this study, we evaluate tenascin-C as a marker of pre-metastatic niche formation in bladder cancer patient lymph nodes. Methods Tenascin-C expression in benign lymph nodes was compared between metastatic (n = 20) and non-metastatic (n = 27) patients with muscle-invasive bladder cancer. Urinary extracellular vesicle (EV) cytokine levels were measured with an antibody array to examine potential correlation with lymph node inflammation. The ability of bladder cancer EVs to activate primary bladder fibroblasts was assessed in vitro. Results Lymph node tenascin-C expression was elevated in metastatic patients vs. non-metastatic patients, and high expression was associated with worse survival. Urinary EVs contained four cytokines that were positively correlated with lymph node tenascin-C expression. Bladder cancer EVs induced tenascin-C expression in fibroblasts in an NF-κB-dependent manner. Conclusions Tenascin-C expression in regional lymph nodes may be a good predictor of bladder cancer metastasis and an appropriate imaging target. It may be possible to interrupt pre-metastatic niche formation by targeting EV-borne tumour cytokines or by targeting tenascin-C directly.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jinbing Sun ◽  
Zhihua Lu ◽  
Wei Fu ◽  
Kuangyi Lu ◽  
Xiuwen Gu ◽  
...  

Exosomes derived from cancer cells are deemed important drivers of pre-metastatic niche formation at distant organs, but the underlying mechanisms of their effects remain largely unknow. Although the role of ADAM17 in cancer cells has been well studied, the secreted ADAM17 effects transported via exosomes are less understood. Herein, we show that the level of exosome-derived ADAM17 is elevated in the serum of patients with metastatic colorectal cancer as well as in metastatic colorectal cancer cells. Furthermore, exosomal ADAM17 was shown to promote the migratory ability of colorectal cancer cells by cleaving the E-cadherin junction. Moreover, exosomal ADAM17 overexpression as well as RNA interference results highlighted its function as a tumor metastasis-promoting factor in colorectal cancer in vitro and in vivo. Taken together, our current work suggests that exosomal ADAM17 is involved in pre-metastatic niche formation and may be utilized as a blood-based biomarker of colorectal cancer metastasis.


2021 ◽  
Vol 12 (9) ◽  
Author(s):  
Zijian Ma ◽  
Ke Wei ◽  
Fengming Yang ◽  
Zizhang Guo ◽  
Chunfeng Pan ◽  
...  

AbstractMetastasis is the main cause of death in patients with advanced lung cancer. The exosomes released by cancer cells create tumor microenvironment, and then accelerate tumor metastasis. Cancer-derived exosomes are considered to be the main driving force for metastasis niche formation at foreign sites, but the mechanism in Non-small cell lung carcinoma (NSCLC) is unclear. In metastatic NSCLC patients, the expression level of miR-3157-3p in circulating exosomes was significantly higher than that of non-metastatic NSCLC patients. Here, we found that miR-3157-3p can be transferred from NSCLC cells to vascular endothelial cells through exosomes. Our work indicates that exosome miR-3157-3p is involved in the formation of pre-metastatic niche formation before tumor metastasis and may be used as a blood-based biomarker for NSCLC metastasis. Exosome miR-3157-3p has regulated the expression of VEGF/MMP2/MMP9 and occludin in endothelial cells by targeting TIMP/KLF2, thereby promoted angiogenesis and increased vascular permeability. In addition, exosome miR-3157-3p promoted the metastasis of NSCLC in vivo.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 141-157
Author(s):  
Bahare Zarin ◽  
Laleh Rafiee ◽  
Parnaz Daneshpajouhnejad ◽  
Shaghayegh Haghjooy Javanmard

Cancers evolve as a result of the accelerated proliferation of cancer cells in a complicated, enriched, and active microenvironment. Tumor microenvironment (TME) components are the master regulators of any step of cancer development. The tumor microenvironment is composed of many cellular and noncellular components that contribute to the evolution of cancer cells. Cancer-associated fibroblasts (CAFs) are activated fibroblasts in the TME that implicate in tumor progression and metastasis dissemination through secretion of oncogenic factors which are carried to the secondary metastatic sites through exosomes. In this review, we aimed to assess the role of CAF-derived exosomes in TME construction and pre-metastatic niche formation in different cancers of the digestive system in order to better understand some important mechanisms of metastasis and provide possible targets for clinical intervention. This review article is divided into two thematic parts explaining the general mechanisms of pre-metastatic niche formation and metastasis and the role of CAF-derived exosomes in different digestive system cancers including colorectal, gastric, esophageal, pancreatic, and liver cancers.


2021 ◽  
Author(s):  
Stephan Emmrich ◽  
Andrei Seluanov ◽  
Vera Gorbunova

The naked mole-rat became a significant animal model for its exceptional longevity and resistance mechanisms to cancers, however the developmental properties of their native stem and progenitor compartments are poorly understood. Here we report a high frequency bone marrow progenitor exclusively present in neonatal animals. The heterotypic developmental stage was marked by an immunophenotype resembling adult naked mole-rat CMP-like progenitors with mature neutrophilic Thy1.1-antigen levels and showed a clear differentiation bias and transcriptome signature towards myelopoiesis. Importantly, myeloid progenitors overexpressed both CXCL12 and its alternative receptor CXCR7, thereby abrogating their homing capacity and produced multiple secreted matrix components related to neonatal bone marrow niche formation. These results indicate a transient ontogenic cell stage during postnatal hematopoiesis unique to naked mole-rats and further advances our understanding of the developmental steps involved in creating the regenerative cell pool and its environment in a long-lived species.


Sign in / Sign up

Export Citation Format

Share Document