Characterization and Expression of Genes Encoding Superoxide Dismutase in the Oriental Armyworm, Mythimna separata (Lepidoptera: Noctuidae)
Abstract Superoxide dismutase (SOD) is an antioxidant metalloenzyme that catalyzes the dismutation of the superoxide anion O2− to O2 and H2O2. Many studies have focused on the role of SOD in response to abiotic stress, but its role during biotic stress, such as changes in organismal population density, has rarely been investigated. The oriental armyworm, Mythimna separata, is an economically important pest that exhibits phenotypic changes in response to population density. Solitary and gregarious phases occur at low and high population density, respectively. To examine the role of SODs in response to population density stress, we cloned two genes encoding SOD, MsCuZnSOD and MsMnSOD, and compared their expression in solitary and gregarious phases of M. separata. The MsCuZnSOD and MsMnSOD ORFs were 480 and 651 bp and encoded predicted protein products of 159 and 216 amino acids, respectively. The two SODs contained motifs that are typical of orthologous proteins. Real-time PCR indicated that the two SOD genes were expressed throughout developmental stages and were significantly upregulated in more mature stages of gregarious M. separata. Expression of the two SOD genes in various tissues of sixth-instar larvae was higher in gregarious versus solitary insects. Furthermore, expression of the SOD genes was significantly upregulated in response to crowding in solitary individuals, but suppressed in gregarious insects subjected to isolation. Collectively, these results suggest that population density may be key factor in the induction of SOD genes in M. separata.