chitinase production
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 28)

H-INDEX

25
(FIVE YEARS 1)

Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1319
Author(s):  
Vikram Poria ◽  
Anuj Rana ◽  
Arti Kumari ◽  
Jasneet Grewal ◽  
Kumar Pranaw ◽  
...  

Chitinases are a large and diversified category of enzymes that break down chitin, the world’s second most prevalent polymer after cellulose. GH18 is the most studied family of chitinases, even though chitinolytic enzymes come from a variety of glycosyl hydrolase (GH) families. Most of the distinct GH families, as well as the unique structural and catalytic features of various chitinolytic enzymes, have been thoroughly explored to demonstrate their use in the development of tailor-made chitinases by protein engineering. Although chitin-degrading enzymes may be found in plants and other organisms, such as arthropods, mollusks, protozoans, and nematodes, microbial chitinases are a promising and sustainable option for industrial production. Despite this, the inducible nature, low titer, high production expenses, and susceptibility to severe environments are barriers to upscaling microbial chitinase production. The goal of this study is to address all of the elements that influence microbial fermentation for chitinase production, as well as the purifying procedures for attaining high-quality yield and purity.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259465
Author(s):  
Ivica Dimkić ◽  
Vibha Bhardwaj ◽  
Valeria Carpentieri-Pipolo ◽  
Nemanja Kuzmanović ◽  
Giuliano Degrassi

Curtobacterium sp. GD1 was isolated from leaves of conventionally grown soybean in Brazil. It was noteworthy that among all bacteria previously isolated from the same origin, only Curtobacterium sp. GD1 showed a strong chitinase activity. The enzyme was secreted and its production was induced by the presence of colloidal chitin in the medium. The chitinase was partially purified and characterized: molecular weight was approximately 37 kDa and specific activity 90.8 U/mg. Furthermore, Curtobacterium sp. GD1 genome was sequenced and analyzed. Our isolate formed a phylogenetic cluster with four other Curtobacterium spp. strains, with ANIb/ANIm ≥ 98%, representing a new, still non described Curtobacterium species. The circular genome visualization and comparison of genome sequences of strains forming new cluster indicated that most regions within their genomes were highly conserved. The gene associated with chitinase production was identified and the distribution pattern of glycosyl hydrolases genes was assessed. Also, genes associated with catabolism of structural carbohydrates such as oligosaccharides, mixed polysaccharides, plant and animal polysaccharides, as well as genes or gene clusters associated with resistance to antibiotics, toxic compounds and auxin biosynthesis subsystem products were identified. The abundance of putative glycosyl hydrolases in the genome of Curtobacterium sp. GD1 suggests that it has the tools for the hydrolysis of different polysaccharides. Therefore, Curtobacterium sp. GD1 isolated from soybean might be a bioremediator, biocontrol agent, an elicitor of the plant defense responses or simply degrader.


2021 ◽  
Vol 17 (9) ◽  
Author(s):  
Victoria Pommer ◽  
Paula Daniela Helfenstein Rother ◽  
Letícia Mara Rasbold ◽  
José Luis Da Conceição Silva ◽  
Alexandre Maller ◽  
...  

Chitinases are enzymes capable of hydrolysing the β-1,4 bonds of chitin releasing chitooligosaccharides and N-acetylglucosamine and are widely used in food, pharmaceutical, and agricultural industries. Microorganisms are potential producers of this enzyme; however, there are no reports in the literature on the production of chitinase by fungi of the genus Thermothelomyces. Thus, this work aimed to investigate the production of extracellular chitinase using alternative carbon sources by the fungus isolated from soil, Thermothelomyces heterothallicus PA2S4T. The fungus was cultivated in a liquid medium supplemented with carbon sources and incubated at 40°C under stationary conditions for seven days. Orange peel flour was the best inducer for extracellular chitinase, with 82.3 U/mL of enzymatic activity. The highest production of chitinase was obtained on the tenth day, and the optimum pH and temperature for enzyme activity were 4.5 and 50ºC, respectively. Therefore, the fungus T. heterothallicus PA2S4T proved to be promising in the production of extracellular chitinase, which presents pH and temperature characteristics favourable to biotechnological application.


2021 ◽  
Vol 32 (3) ◽  
pp. 25-38
Author(s):  
Aminu Argungu Umar ◽  
Aminu Bandam Hussaini ◽  
Jibril Yahayya ◽  
Ibrahim Sani ◽  
Habiba Aminu

Chitinases which degrade chitin have attracted attention as biological antifungal agents. The purpose of this study is to isolate Streptomyces from Fadama soil and assess its chitinolytic and antagonist potential against phytopathogenic fungi for application as biocontrol agent. Streptomyces were isolated from Fadama soil. The selected isolate CT02 exhibited chitinolytic characteristics. Chitinase production was performed under different temperatures, pH and varying incubation period. The highest chitinase production by CT02 isolate was observed after five days of cultivation. The highest chitinase activity was observed at 35°C and pH 7. The crude extracellular enzyme exhibited a specific activity of 4.20 U/μg whereas partially purified extracellular enzyme exhibited a specific activity of 6.19 U/μg with purification fold of 1.47. The selected isolate CT02 and its extracellular crude chitinase showed in vitro antifungal antagonist potential by inhibiting the growth of Aspergillus niger and Aspergillus oryzae. This indicates that Streptomyces derived chitinases are potential biocontrol agents against phytopathogenic fungi.


2021 ◽  
Vol 2 (4) ◽  
pp. 1-16
Author(s):  
Ibrahim Sani ◽  
Aminu Argungu Umar ◽  
Evelyn Uzoamaka Udeze

The aim of this research was to produce Streptomyces-extracellular chitinase and screen its antifungal activity on a clinically isolated Candida albicans. The Streptomyces were isolated from an agricultural farmland; they were identified and screened for the chitinase production. Effects of time, temperature, pH and nitrogen sources on the chitinase production were determined using standard methods. Ammonium sulphate precipitation was used to partially purify the chitinase. Protein concentrations were determined spectrophotometrically using bovine serum albumin as standard. Agar-well diffusion method was used to evaluate the antifungal activity of the chitinase on C. albicans. The isolated Streptomyces were of three (3) strains, and all the strains are Gram positive, catalase positive, oxidase positive while, Strain A and C are indole positive and only Strain B is citrate positive. The maximum chitinase production was at 72 h, 40°C and when yeast extract was used as the nitrogen source. Ammonium sulphate (80%) precipitation yielded the highest enzyme activity of 39.0U/ml. The maximum enzyme activity was observed at temperature of 40oC, pH 5.5 and 1.0% colloidal chitin (substrate). The partially purified chitinase showed a zone of inhibition of 20.11 ± 1.26 mm against the Candida albicans. This result has no significant difference (P>0.05) when compared with that of the standard drug (Fluconazole) with 21.42 ± 0.08 mm zone of inhibition. These findings suggest that Streptomyces at favourable conditions produce chitinase, and this enzyme can be used as an antifungal agent on Candida albicans and other chitin containing fungi.


2021 ◽  
Vol 9 (9) ◽  
pp. 1962
Author(s):  
Fayaz A. Mohiddin ◽  
Shahid A. Padder ◽  
Arif H. Bhat ◽  
Mohammad A. Ahanger ◽  
Asif B. Shikari ◽  
...  

Trichoderma is the most commonly used fungal biocontrol agent throughout the world. In the present study, various Trichoderma isolates were isolated from different vegetable fields. In the isolated microflora, the colony edges varied from wavy to smooth. The mycelial forms were predominantly floccose with hyaline color and conidiophores among all the strains were highly branched. Based on morphological attributes, all the isolates were identified as Trichoderma harzianum. The molecular identification using multilocus sequencing ITS, rpb2 and tef1α, genes further confirmed the morphological identification. The average chitinase activity varied from 1.13 units/mL to 3.38 units/mL among the various isolates, which increased linearly with temperature from 15 to 30 °C. There was an amplified production in the chitinase production in the presence of Mg+ and Ca2+ and Na+ metal ions, but the presence of certain ions was found to cause the down-regulated chitinase activity, i.e., Zn2+, Hg2+, Fe2+, Ag+ and K+. All the chitinase producing Trichoderma isolates inhibited the growth of tested pathogens viz., Dematophora necatrix, Fusarium solani, Fusarium oxysporum and Pythium aphanidermatum at 25% culture-free filtrate concentration under in vitro conditions. Also, under in vivo conditions, the lowest wilt incidence and highest disease control on Fusarium oxysporum was observed in isolate BT4 with mean wilt incidence and disease control of 21% and 48%, respectively. The Trichoderma harzianum identified in this study will be further used in formulation development for the management of diseases under field conditions.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3048
Author(s):  
Chien Thang Doan ◽  
Thi Ngoc Tran ◽  
San-Lang Wang

The bioprocessing of chitinous fishery wastes (CFWs) to chitinases through fermentation approaches has gained importance owing to its great benefits in reducing the enzyme production cost, and utilizing chitin waste. In this work, our study of the chitinase production of Paenibacillus sp. TKU052 in the presence of different kinds of CFWs revealed a preference for demineralized crab shells powder (deCSP); furthermore, a 72 kDa chitinase was isolated from the 0.5% deCSP-containing medium. The Paenibacillus sp. TKU052 chitinase displayed maximum activity at 70 °C and pH 4–5, while Zn2+, Fe3+, Triton X-100, Tween 40, and SDS exerted a negative effect on its activity, whereas Mn2+ and 2-mercaptoethanol were found to potentially enhance the activity. Among various kinds of polysaccharide, Paenibacillus sp. TKU052 chitinase exhibited the best catalytic activity on colloidal chitin (CC) with Km = 9.75 mg/mL and Vmax = 2.43 μmol/min. The assessment of the hydrolysis of CC and N-acetyl chitooligosaccharides revealed that Paenibacillus sp. TKU052 chitinase possesses multiple catalytic functions, including exochitinase, endochitinase, and N-acetyl-β-D-glucosaminidase activities. Finally, the combination of Paenibacillus sp. TKU052 chitinase and Streptomyces speibonae TKU048 N-acetyl-β-D-glucosaminidase could efficiently convert CC to N-acetyl-D-glucosamine (GlcNAc) with a production yield of 94.35–98.60% in 12–24 h.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nayana Gaur ◽  
Elena Huss ◽  
Tino Prell ◽  
Robert Steinbach ◽  
Joel Guerra ◽  
...  

Neuroinflammation significantly contributes to Amyotrophic Lateral Sclerosis (ALS) pathology. In lieu of this, reports of elevated chitinase levels in ALS are interesting, as they are established surrogate markers of a chronic inflammatory response. While post-mortem studies have indicated glial expression, the cellular sources for these moieties remain to be fully understood. Therefore, the objective of this pilot study was to examine whether the peripheral immune system also contributes to chitinase dysregulation in ALS. The temporal expression of CHIT1, CHI3L1, and CHI3L2 in non-polarized monocyte-derived macrophages (MoMas) from ALS patients and healthy controls (HCs) was examined. We demonstrate that while CHIT1 and CHI3L1 display similar temporal expression dynamics in both groups, profound between-group differences were noted for these targets at later time-points i.e., when cells were fully differentiated. CHIT1 and CHI3L1 expression were significantly higher in MoMas from ALS patients at both the transcriptomic and protein level, with CHI3L1 levels also being influenced by age. Conversely, CHI3L2 expression was not influenced by disease state, culture duration, or age. Here, we demonstrate for the first time, that in ALS, circulating immune cells have an intrinsically augmented potential for chitinase production that may propagate chronic neuroinflammation, and how the ageing immune system itself contributes to neurodegeneration.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nilofar Naaz ◽  
B. Rama Devi ◽  
SK. Mahmood

Chitinase plays significant role in the decomposition of chitin and potentially in the utilization of chitin as a renewable resource. Chitinases contribute to the production of carbon and nitrogen in the ecosystem. Chitinases are split into two broad categories as endo-chitinases and exo-chitinases. Common sources for chitinase production are insects, plants, mammals, bacteria and fungi. Enzymatic hydrolysis of chitin produces great interest in biomedical, industrial and agricultural applications. Production of low cost chitinolytic enzymes is significant in chitinous waste recycling as it is useful for the environment protection. In this review, various types of chitinases found in different organisms and its biotechnological applications are discussed.


Sign in / Sign up

Export Citation Format

Share Document