Metabolite shift in Medicago truncatula occurs in phosphorus deprivation

Author(s):  
Dhiraj Dokwal ◽  
Jean-Christophe Cocuron ◽  
Ana Paula Alonso ◽  
Rebecca Dickstein

Abstract Symbiotic nitrogen fixation entails successful interaction between legume hosts and rhizobia that occur in specialized organs called nodules. N2-fixing legumes have higher demand of phosphorus (P) than legumes grown on mineral N. Medicago truncatula is an important model plant for characterization of effects of P deficiency at the molecular level. Hence, a study was carried out to address the alteration in metabolite levels of M. truncatula grown aeroponically and subjected to four weeks of P stress. First, GC-MS based untargeted metabolomics employed initially revealed changes in metabolic profile of nodules with increased levels of amino acids and sugars and decline in amounts of organic acids. Subsequently, LC-MS/MS was used to quantify these compounds including phosphorylated metabolites in overall plant. Our results showed drastic reduction in levels of organic acids and phosphorylated compounds in -P leaves with moderate reduction in -P roots and nodules. Additionally, sugars and amino acids were elevated in the whole plant under P deprivation. These findings provide evidence that N2-fixation in M. truncatula is mediated through N feedback mechanism that in parallel is related to C and P metabolism.

2019 ◽  
Author(s):  
Jiajia Luo ◽  
Yunxi Liu ◽  
Huikai Zhang ◽  
Jinpeng Wang ◽  
Zhijian Chen ◽  
...  

Abstract Background Low phosphorus (P) availability is a major constraint on the growth of plants, especially in acid soils. Stylosanthes (stylo) is a pioneer tropical legume with several adaptive strategies to cope with P deficiency, but its metabolic reprogramming during P limitation remain poorly understood. Results To shed light on the acclimation of stylo roots to low P stress, morphophysiological and metabolic response were investigated in this study. After 15 days of low P treatment, shoot dry weight and total P concentration were markedly hampered, whereas root growth, root APase activity, root antioxidant activity were markedly enhanced. Corresponding investigation of metabolic profiling showed that a total of 256 metabolites with differential accumulation in response to P deficiency were identified in stylo roots, mainly including sugars, organic acids, amino acids, nucleotides, phenylpropanoids and their derivatives. P deficiency leads to significant reduction in the levels of phosphorylated sugars and nucleotides, indicates that the known strategies of P scavenging from P-containing metabolites are observed. The metabolisms of organic acids and amino acids were also remodeled by P limitation, which suggests that P-deficient stylo roots redistribute their carbohydrates in responding P deprivation, by releasing organic acids into the rhizosphere to mobilize phosphate from P complexes and employing amino acids as alternative carbon resource for energy metabolism. In phenylpropanoid metabolism pathway, the increased accumulation flavonoids, as well as up-regulated expression of involved genes SgF3H, SgF3’H, SgFLS, might contribute to enhance the antioxidant activity of stylo roots, especially kaempferol, quercetin, dihydromyricetin. The enhanced accumulation isoflavonoids with differential expression of related genes (SgHID and SgUGT) supported the opinion of isoflavonoids secreted to function with rhizosphere microbes in responding to P deficiency condition, especially daidzein and rotenone. Conclusions This study provides valuable insights generated from stylo roots into the various adaptation responses to Pi-starvation, identified candidate genes and metabolites will make some contributions to detect potential target region for future developing Pi-efficiency breeding research.


LWT ◽  
2021 ◽  
Vol 140 ◽  
pp. 110690
Author(s):  
Jianxin Song ◽  
Yiming Yan ◽  
Xiaodong Wang ◽  
Xihong Li ◽  
Ye Chen ◽  
...  

Author(s):  
Yan Huang ◽  
Wen Duan ◽  
Junfei Xiao ◽  
He Liu ◽  
Chenchen Zhou ◽  
...  

AbstractHigh-performance liquid chromatography was used to determine the important taste compounds in 20 pungent spices commonly used in food, including seventeen free amino acids, four 5′-nucleotides and twelve organic acids. The equivalent umami concentration (EUC) and taste activity value (TAV) of the analyzed samples were calculated. The results showed that the content of total free amino acids ranged from 0.57 to 46.67 g/kg in 20 pungent spices. The content of total free amino acids in horseradish was the highest. The content of total 5′-nucleotides ranged from 0.80 to 4.30 g/kg, and chive contains the highest 5′-nucleotide content. Inosine 5′-monophosphate was detected in all 20 pungent spices. The content of total organic acids ranged from 9.37 to 339.58 g/kg. The total organic acids content of fieldmint was the highest (339.58 g/kg). Oxalic acid was detected in 18 pungent spices, except white pepper and chilli. The EUC of fieldmint (37.1 g MSG/100 g) was the highest in all 20 pungent spices, followed with peppermint (24.5 g MSG/100 g), and horseradish (18.4 g MSG/100 g). The TAVs of malic acid, lactic acid and 5′-AMP were higher than 1 in more than 10 spices. Lactic acid were higher than 1 in 13 spices, implying these compounds contributed greater to the flavor of pungent spices. The results of this work will provide references for the application value of pungent spices.


2020 ◽  
Vol 17 ◽  
Author(s):  
Balogun Olaoye Solomon ◽  
Ajayi Olukayode Solomon ◽  
Owolabi Temitayo Abidemi ◽  
Oladimeji Abdulkarbir Oladele ◽  
Liu Zhiqiang

: Cissus aralioides is a medicinal plant used in sub-Saharan Africa for treatment of infectious diseases; however the chemical constituents of the plant have not been investigated. Thus, in this study, attempt was made at identifying predominant phytochemical constituents of the plant through chromatographic purification and silylation of the plant extract, and subsequent characterization using spectroscopic and GC-MS techniques. The minimum inhibitory concentration (MICs) for the antibacterial activities of the plant extract, chromatographic fractions and isolated compounds were also examined. Chromatographic purification of the ethyl acetate fraction from the whole plant afforded three compounds: β-sitosterol (1), stigmasterol (2) and friedelin (3). The phytosterols (1 and 2) were obtained together as a mixture. The GC-MS analysis of silylated extract indicated alcohols, fatty acids and sugars as predominant classes, with composition of 24.62, 36.90 and 26.52% respectively. Results of MICs indicated that friedelin and other chromatographic fractions had values (0.0626-1.0 mg/mL) comparable with the standard antibiotics used. Characterization of natural products from C. aralioides is being reported for the first time in this study.


1984 ◽  
Vol 49 (8) ◽  
pp. 1846-1853 ◽  
Author(s):  
Karel Hauzer ◽  
Tomislav Barth ◽  
Linda Servítová ◽  
Karel Jošt

A post-proline endopeptidase (EC 3.4.21.26) was isolated from pig kidneys using a modified method described earlier. The enzyme was further purified by ion exchange chromatography on DEAE-Sephacel. The final product contained about 95% of post-proline endopeptidase. The enzyme molecule consisted of one peptide chain with a relative molecular mass of 65 600 to 70 000, containing a large proportion of acidic and alifatic amino acids (glutamic acid, aspartic acid and leucine) and the N-terminus was formed by aspartic acid or asparagine. In order to prevent losses of enzyme activity, thiol compounds has to be added.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 248
Author(s):  
Chang Ha Park ◽  
Hyeon Ji Yeo ◽  
Ye Jin Kim ◽  
Bao Van Nguyen ◽  
Ye Eun Park ◽  
...  

This study aimed to elucidate the variations in primary and secondary metabolites during Lycorisradiata flower development using high performance liquid chromatography (HPLC) and gas chromatography time-of-flight mass spectrometry (GC-TOFMS). The result showed that seven carotenoids, seven phenolic acids, three anthocyanins, and galantamine were identified in the L. radiata flowers. Most secondary metabolite levels gradually decreased according to the flower developmental stages. A total of 51 metabolites, including amines, sugars, sugar intermediates, sugar alcohols, amino acids, organic acids, phenolic acids, and tricarboxylic acid (TCA) cycle intermediates, were identified and quantified using GC-TOFMS. Among the hydrophilic compounds, most amino acids increased during flower development; in contrast, TCA cycle intermediates and sugars decreased. In particular, glutamine, asparagine, glutamic acid, and aspartic acid, which represent the main inter- and intracellular nitrogen carriers, were positively correlated with the other amino acids and were negatively correlated with the TCA cycle intermediates. Furthermore, quantitation data of the 51 hydrophilic compounds were subjected to partial least-squares discriminant analyses (PLS-DA) to assess significant differences in the metabolites of L. radiata flowers from stages 1 to 4. Therefore, this study will serve as the foundation for a biochemical approach to understand both primary and secondary metabolism in L. radiata flower development.


Author(s):  
Chiara Roberta Girelli ◽  
Francesca Serio ◽  
Rita Accogli ◽  
Federica Angilè ◽  
Antonella De Donno ◽  
...  

Background: Plants of genus Cichorium are known for their therapeutic and nutraceutical properties determined by a wealth of phytochemical substances contained in the whole plant. The aim of this paper was to characterize the metabolic profiles of local Salento chicory (Cichorium intybus L.) varieties (“Bianca”, “Galatina”, “Leccese”, and “Otranto”) in order to describe their metabolites composition together with possible bioactivity and health beneficial properties. Methods: The investigation was performed by 1H-NMR spectroscopy and Multivariate Analysis (MVA), by which the metabolic profiles of the samples were easily obtained and compared. Results: The supervised Partial Least Squares Discriminant Analysis (PLS-DA) analysis showed as “Bianca” and “Galatina” samples grouped together separated by “Leccese” and “Otranto” varieties. A different content of free amino acids and organic acids was observed among the varieties. In particular a high content of cichoric and monocaffeoyl tartaric acid was observed for the “Leccese” variety. The presence of secondary metabolites adds significant interest in the investigation of Cichorium inthybus, as this vegetable may benefit human health when incorporated into the diet. Conclusions: The 1H-NMR (Nuclear Magnetic Resonance Spectroscopy) based characterization of Salento chicory varieties allowed us to determine the potential usefulness and nutraceutical properties of the product, also providing a method to guarantee its authenticity on a molecular scale.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Pablo Mier ◽  
Miguel A. Andrade-Navarro

Abstract According to the amino acid composition of natural proteins, it could be expected that all possible sequences of three or four amino acids will occur at least once in large protein datasets purely by chance. However, in some species or cellular context, specific short amino acid motifs are missing due to unknown reasons. We describe these as Avoided Motifs, short amino acid combinations missing from biological sequences. Here we identify 209 human and 154 bacterial Avoided Motifs of length four amino acids, and discuss their possible functionality according to their presence in other species. Furthermore, we determine two Avoided Motifs of length three amino acids in human proteins specifically located in the cytoplasm, and two more in secreted proteins. Our results support the hypothesis that the characterization of Avoided Motifs in particular contexts can provide us with information about functional motifs, pointing to a new approach in the use of molecular sequences for the discovery of protein function.


Sign in / Sign up

Export Citation Format

Share Document