p deficiency
Recently Published Documents


TOTAL DOCUMENTS

466
(FIVE YEARS 176)

H-INDEX

34
(FIVE YEARS 6)

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 108
Author(s):  
Qianwen Deng ◽  
Liangfang Dai ◽  
Yaling Chen ◽  
Decai Wu ◽  
Yu Shen ◽  
...  

Phosphorus (P) deficiency tolerance in rice is a complex character controlled by polygenes. Through proteomics analysis, we could find more low P tolerance related proteins in unique P-deficiency tolerance germplasm Dongxiang wild rice (Oryza Rufipogon, DXWR), which will provide the basis for the research of its regulation mechanism. In this study, a proteomic approach as well as joint analysis with transcriptome data were conducted to identify potential unique low P response genes in DXWR during seedlings. The results showed that 3589 significant differential accumulation proteins were identified between the low P and the normal P treated root samples of DXWR. The degree of change was more than 1.5 times, including 60 up-regulated and 15 downregulated proteins, 24 of which also detected expression changes of more than 1.5-fold in the transcriptome data. Through quantitative trait locus (QTLs) matching analysis, seven genes corresponding to the significantly different expression proteins identified in this study were found to be uncharacterized and distributed in the QTLs interval related to low P tolerance, two of which (LOC_Os12g09620 and LOC_Os03g40670) were detected at both transcriptome and proteome levels. Based on the comprehensive analysis, it was found that DXWR could increase the expression of purple acid phosphatases (PAPs), membrane location of P transporters (PTs), rhizosphere area, and alternative splicing, and it could decrease reactive oxygen species (ROS) activity to deal with low P stress. This study would provide some useful insights in cloning the P-deficiency tolerance genes from wild rice, as well as elucidating the molecular mechanism of low P resistance in DXWR.


Author(s):  
Dhiraj Dokwal ◽  
Jean-Christophe Cocuron ◽  
Ana Paula Alonso ◽  
Rebecca Dickstein

Abstract Symbiotic nitrogen fixation entails successful interaction between legume hosts and rhizobia that occur in specialized organs called nodules. N2-fixing legumes have higher demand of phosphorus (P) than legumes grown on mineral N. Medicago truncatula is an important model plant for characterization of effects of P deficiency at the molecular level. Hence, a study was carried out to address the alteration in metabolite levels of M. truncatula grown aeroponically and subjected to four weeks of P stress. First, GC-MS based untargeted metabolomics employed initially revealed changes in metabolic profile of nodules with increased levels of amino acids and sugars and decline in amounts of organic acids. Subsequently, LC-MS/MS was used to quantify these compounds including phosphorylated metabolites in overall plant. Our results showed drastic reduction in levels of organic acids and phosphorylated compounds in -P leaves with moderate reduction in -P roots and nodules. Additionally, sugars and amino acids were elevated in the whole plant under P deprivation. These findings provide evidence that N2-fixation in M. truncatula is mediated through N feedback mechanism that in parallel is related to C and P metabolism.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 89
Author(s):  
Amna Eltigani ◽  
Anja Müller ◽  
Benard Ngwene ◽  
Eckhard George

Okra is an important crop species for smallholder farmers in many tropical and subtropical regions of the world. Its interaction with mycorrhiza has been rarely studied, and little is known about its mycorrhizal dependency, especially under drought stress. In a glasshouse experiment, we investigated the effect of Arbuscular Mycorrhiza Fungi (AMF) inoculation on growth, evapotranspiration, mineral nutrition and root morphology of five okra cultivars under ample water and drought stress conditions. ‘Khartoumia’, ‘HSD6719’, ‘HSD7058’, ‘Sarah’ and ‘Clemson Spineless’-cultivars commonly used by farmers in Sudan were chosen for their geographical, morphological and breeding background variations. The plants were either inoculated with R. irregulare or mock-inoculated. Seven weeks after seeding, the soil–water content was either maintained at 20% w/w or reduced to 10% w/w to impose drought stress. Drought stress resulted in plant P deficiency and decreased shoot dry biomass (DB), especially in HSD7058 and Clemson Spineless (69% and 56% decrease in shoot DB, in the respective cultivars). Plant inoculation with AMF greatly enhanced the shoot total content of P and the total DB in all treatments. The mycorrhizal dependency (MD) -the degree of total plant DB change associated with AM colonization- differed among the cultivars, irrespective of the irrigation treatment. Key determinants of MD were the root phenotype traits. Khartoumia (with the highest MD) had the lowest root DB, root-to-shoot ratio, and specific root length (SRL). Meanwhile, HSD6719 (with the lowest MD) had the highest respective root traits. Moreover, our data suggest a relationship between breeding background and MD. The improved cultivar Khartoumia showed the highest MD compared with the wild-type Sarah and the HSD7058 and HSD6719 landraces (higher MD by 46%, 17% and 32%, respectively). Interestingly, the drought-affected HSD7058 and Clemson Spineless exhibited higher MD (by 27% and 15%, respectively) under water-deficiency compared to ample water conditions. In conclusion, the mediation of drought stress in the okra plant species by AMF inoculation is cultivar dependent. The presence of AMF propagules in the field soil might be important for increasing yield production of high MD and drought susceptible cultivars, especially under drought/low P environments.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1760
Author(s):  
Xingtang Zhao ◽  
Xu Zhang ◽  
Zhang Liu ◽  
Yipin Lv ◽  
Tingting Song ◽  
...  

With the continuous increase in atmospheric carbon dioxide emissions, nitrogen (N) and phosphorus (P) as mineral elements increasingly restrict plant growth. To explore the effect of deficiency of P and N on growth and physiology, Fraxinus mandshurica (hereafter “F. mandshurica”) Rupr. annual seedlings of Wuchang (WC) provenance with fast growth and Dailing (DL) provenance with slow growth were treated with complete nutrition or starvation of N (N-), P (P-) or both elements (NP-). Although P- and N- increased the use efficiency of P (PUE) and N (NUE), respectively, they reduced the leaf area, chlorophyll content and activities of N assimilation enzymes (NR, GS, GOGAT), which decreased the dry weight and P or N amount. The free amino acid content and activities of Phosphoenolpyruvate carboxylase (PEPC) and acid phosphatase enzymes were reduced by N-. The transcript levels of NRT2.1, NRT2.4, NRT2.5, NRT2.7, AVT1, AAP3, NIA2, PHT1-3, PHT1-4 and PHT2-1 in roots were increased, but those of NRT2.1, NRT2.4, NRT2.5, PHT1-3, PHT1-4, PHT2-1 and AAP3 in leaves were reduced by P-. WC was significantly greater than DL under P- in dry weight, C amount, N amount, leaf area, PUE, NUE, which related to greater chlorophyll content, PEPC enzyme activity, N assimilation enzyme activities, and transcript levels of N and P transporter genes in roots and foliage, indicating a greater ability of WC to absorb, transport and utilize N and P under P-. WC was also greater than DL under N- in terms of the above indicators except the transcript levels of N and P assimilation genes, but most of the indicators did not reach a significant level, indicating that WC might be more tolerant to N- than DL, which requires further verification. In summary, WC was identified as a P-efficient provenance, as the growth rate was greater for the genetic type with high than low tolerance to P-.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2711
Author(s):  
Vinita Ramtekey ◽  
Ruchi Bansal ◽  
Muraleedhar S. Aski ◽  
Deepali Kothari ◽  
Akanksha Singh ◽  
...  

Phosphorus (P) is an essential, non-renewable resource critical for crop productivity across the world. P is immobile in nature and, therefore, the identification of novel genotypes with efficient P uptake and utilization under a low P environment is extremely important. This study was designed to characterize eighty genotypes of different Lens species for shoot and root traits at two contrasting levels of P. A significant reduction in primary root length (PRL), total surface area (TSA), total root tips (TRT), root forks (RF), total dry weight (TDW), root dry weight (RDW) and shoot dry weight (SDW) in response to P deficiency was recorded. A principal component analysis revealed that the TDW, SDW and RDW were significantly correlated to P uptake and utilization efficiency in lentils. Based on total dry weight (TDW) under low P, L4727, EC718309, EC714238, PL-97, EC718348, DPL15, PL06 and EC718332 were found promising. The characterization of different Lens species revealed species-specific variations for the studied traits. Cultivated lentils exhibited higher P uptake and utilization efficiency as compared to the wild forms. The study, based on four different techniques, identified EC714238 as the most P use-efficient genotype. The genotypes identified in this study can be utilized for developing mapping populations and deciphering the genetics for breeding lentil varieties suited for low P environments.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiao Li Li ◽  
Xue Qiang Zhao ◽  
Xiao Ying Dong ◽  
Jian Feng Ma ◽  
Ren Fang Shen

Phosphorus (P) deficiency is one of the major factors limiting plant growth in acid soils, where most P is fixed by toxic aluminum (Al). Phosphate-solubilizing bacteria (PSBs) are important for the solubilization of fixed P in soils. Many PSBs have been isolated from neutral and calcareous soils, where calcium phosphate is the main P form, whereas PSBs in acid soils have received relatively little attention. In this study, we isolated a PSB strain from the rhizosphere of Lespedeza bicolor, a plant well adapted to acid soils. On the basis of its 16S rRNA gene sequence, this strain was identified as a Nguyenibacter species and named L1. After incubation of Nguyenibacter sp. L1 for 48 h in a culture medium containing AlPO4 as the sole P source, the concentration of available P increased from 10 to 225 mg L–1, and the pH decreased from 5.5 to 2.5. Nguyenibacter sp. L1 exhibited poor FePO4 solubilization ability. When the pH of non-PSB-inoculated medium was manually adjusted from 5.5 to 2.5, the concentration of available P only increased from 6 to 65 mg L–1, which indicates that growth medium acidification was not the main contributor to the solubilization of AlPO4 by Nguyenibacter sp. L1. In the presence of glucose, but not fructose, Nguyenibacter sp. L1 released large amounts of gluconic acid to solubilize AlPO4. Furthermore, external addition of gluconic acid enhanced AlPO4 solubilization and reduced Al toxicity to plants. We conclude that secretion of gluconic acid by Nguyenibacter sp. L1, which is dependent on glucose supply, is responsible for AlPO4 solubilization as well as the alleviation of Al phytotoxicity by this bacterial strain.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1585
Author(s):  
Hui Zhang ◽  
Nemin Wang ◽  
Shanshan Zheng ◽  
Min Chen ◽  
Xiangqing Ma ◽  
...  

Studying the effects of different concentrations of ethephon on morphological and physiological changes in the roots of Chinese fir (Cunninghamia lanceolata Lamb. Hook.) seedlings under P deficiency can reveal the internal adaptive mechanisms of these plants under nutrient stress. Herein, we investigated the effects of different ethephon and cobalt chloride concentrations under normal P supply and P deficiency. A significant effect (p < 0.05) of exogenous additive application was observed on the development of Chinese fir root length, surface area, and volume. These root development indices showed maximum values when the ethephon concentration was 0.01 g kg−1 under normal P supply and P deficiency, and they were significantly different from those under 0.04 g kg−1 ethephon treatment. Similarly, the indices showed maximum values when CoCl2 concentration was 0.01 g kg−1 under P deficiency and was significantly different (p < 0.01) from those under 0.2 g kg−1 CoCl2 treatment. Under normal P supply, an increase in ethephon concentration caused superoxide dismutase (SOD; E.C. 1.15.1.1) activity to decrease and peroxidase (POD; E.C. 1.11.1.X) activity to increase gradually. Conversely, CoCl2 addition (0.01 g kg−1) promoted SOD and POD activities under P deficiency. There were no significant differences (p > 0.05) in malondialdehyde content of seedlings among ethephon or CoCl2 treatments. In conclusion, ethylene plays a significant role in adaptative mechanisms underlying stress resistance in plants, prompting them to respond to P starvation and improving seedlings’ tolerance to P-deficient conditions.


2021 ◽  
Vol 22 (22) ◽  
pp. 12348
Author(s):  
Xiaohui Mo ◽  
Mengke Zhang ◽  
Zeyu Zhang ◽  
Xing Lu ◽  
Cuiyue Liang ◽  
...  

Phosphorus (P) is an essential macronutrient for plant growth and development. Among adaptive strategies of plants to P deficiency, increased anthocyanin accumulation is widely observed in plants, which is tightly regulated by a set of genes at transcription levels. However, it remains unclear whether other key regulators might control anthocyanin synthesis through protein modification under P-deficient conditions. In the study, phosphate (Pi) starvation led to anthocyanin accumulations in soybean (Glycine max) leaves, accompanied with increased transcripts of a group of genes involved in anthocyanin synthesis. Meanwhile, transcripts of GmCSN5A/B, two members of the COP9 signalosome subunit 5 (CSN5) family, were up-regulated in both young and old soybean leaves by Pi starvation. Furthermore, overexpressing GmCSN5A and GmCSN5B in Arabidopsis thaliana significantly resulted in anthocyanin accumulations in shoots, accompanied with increased transcripts of gene functions in anthocyanin synthesis including AtPAL, AtCHS, AtF3H, AtF3′H, AtDFR, AtANS, and AtUF3GT only under P-deficient conditions. Taken together, these results strongly suggest that P deficiency leads to increased anthocyanin synthesis through enhancing expression levels of genes involved in anthocyanin synthesis, which could be regulated by GmCSN5A and GmCSN5B.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guodong Chen ◽  
Yang Li ◽  
Cong Jin ◽  
Jizhong Wang ◽  
Li Wang ◽  
...  

Phosphorus (P) is an essential macronutrient for the growth and development of fruit trees, playing an important role in photosynthesis, nucleic acid synthesis, and enzyme activity regulation. The plasticity of plant phenotypic has been investigated in diverse species under conditions of P-deficiency or P-excess. Based on these researches, P level fluctuations in different species result in different characteristics of the response. Nevertheless, little is known about the response of pear seedling rootstock (Pyrus betulifolia Bunge) to the changing of P levels. To explore the effects of different levels of P on the growth of pear seedling rootstock, we performed the hydroponic assays to determine and analyze the biological indexes including growth parameters, photosynthetic rate, root and shoot morphological traits, and concentrations of macro- and micronutrients. The results show that either deficiency or excess of P inhibited the growth and development of pear seedling rootstock. Root growth (down 44.8%), photosynthetic rate (down 59.8%), and acid phosphatase (ACP) activity (down 44.4%) were inhibited under the P-deficiency conditions (0mM), compared with normal P conditions (1mM). On the other hand, dark green leaves, suppression of root elongation (down 18.8%), and photosynthetic rate (down 25%) were observed under regimes of excessive P, compared with normal P conditions (1mM). Furthermore, the root concentration of not only P, but also those of other mineral nutrients were affected by either P treatment. In brief, these results indicated that a careful choice of P fertilizer supply is crucial to ensuring normal growth and development of pear seedling rootstock.


2021 ◽  
Vol 4 ◽  
Author(s):  
Sabine Braun ◽  
Sven-Eric Hopf ◽  
Simon Tresch ◽  
Jan Remund ◽  
Christian Schindler

European beech is one of the most important deciduous tree species in natural forest ecosystems in Central Europe. Its dominance is now being questioned by the emerging drought damages due to the increased incidence of severe summer droughts. In Switzerland, Fagus sylvatica have been observed in the Intercantonal Forest Observation Program since 1984. The dataset presented here includes 179176 annual observations of beech trees on 102 plots during 37 years. The plots cover gradients in drought, nitrogen deposition, ozone, age, altitude, and soil chemistry. In dry regions of Switzerland, the dry and hot summer of 2018 caused a serious branch dieback, increased mortality in Fagus sylvatica and increased yellowing of leaves. Beech trees recovered less after 2018 than after the dry summer 2003 which had been similar in drought intensity except that the drought in 2018 started earlier in spring. Our data analyses suggest the importance of drought in subsequent years for crown transparency and mortality in beech. The drought in 2018 followed previous dry years of 2015 and 2017 which pre-weakened the trees. Our long-term data indicate that the drought from up to three previous years were significant predictors for both tree mortality and for the proportion of trees with serious (&gt;60%) crown transparency. The delay in mortality after the weakening event suggests also the importance of weakness parasites. The staining of active vessels with safranine revealed that the cavitation caused by the low tree water potentials in 2018 persisted at least partially in 2019. Thus, the ability of the branches to conduct water was reduced and the branches dried out. Furthermore, photooxidation in light-exposed leaves has increased strongly since 2011. This phenomenon was related to low concentrations of foliar phosphorus (P) and hot temperatures before leaf harvest. The observed drought effects can be categorized as (i) hydraulic failure (branch dieback), (ii) energy starvation as a consequence of closed stomata and P deficiency (photooxidation) and (iii) infestation with weakness parasites (beech bark disease and root rots).


Sign in / Sign up

Export Citation Format

Share Document