scholarly journals Probability logic: A model-theoretic perspective

Author(s):  
M Pourmahdian ◽  
R Zoghifard

Abstract This paper provides some model-theoretic analysis for probability (modal) logic ($PL$). It is known that this logic does not enjoy the compactness property. However, by passing into the sublogic of $PL$, namely basic probability logic ($BPL$), it is shown that this logic satisfies the compactness property. Furthermore, by drawing some special attention to some essential model-theoretic properties of $PL$, a version of Lindström characterization theorem is investigated. In fact, it is verified that probability logic has the maximal expressive power among those abstract logics extending $PL$ and satisfying both the filtration and disjoint unions properties. Finally, by alternating the semantics to the finitely additive probability models ($\mathcal{F}\mathcal{P}\mathcal{M}$) and introducing positive sublogic of $PL$ including $BPL$, it is proved that this sublogic possesses the compactness property with respect to $\mathcal{F}\mathcal{P}\mathcal{M}$.

Author(s):  
Andrew Gelman ◽  
Deborah Nolan

This chapter contains many classroom activities and demonstrations to help students understand basic probability calculations, including conditional probability and Bayes rule. Many of the activities alert students to misconceptions about randomness. They create dramatic settings where the instructor discerns real coin flips from fake ones, students modify dice and coins in order to load them, students “accused” of lying based on the outcome of an inaccurate simulated lie detector face their classmates. Additionally, probability models of real outcomes offer good value: first we can do the probability calculations, and then can go back and discuss the potential flaws of the model.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1409
Author(s):  
Marija Boričić Joksimović

We give some simple examples of applying some of the well-known elementary probability theory inequalities and properties in the field of logical argumentation. A probabilistic version of the hypothetical syllogism inference rule is as follows: if propositions A, B, C, A→B, and B→C have probabilities a, b, c, r, and s, respectively, then for probability p of A→C, we have f(a,b,c,r,s)≤p≤g(a,b,c,r,s), for some functions f and g of given parameters. In this paper, after a short overview of known rules related to conjunction and disjunction, we proposed some probabilized forms of the hypothetical syllogism inference rule, with the best possible bounds for the probability of conclusion, covering simultaneously the probabilistic versions of both modus ponens and modus tollens rules, as already considered by Suppes, Hailperin, and Wagner.


1969 ◽  
Vol 34 (2) ◽  
pp. 183-193 ◽  
Author(s):  
Peter H. Krauss

This paper is a sequel to the joint publication of Scott and Krauss [8] in which the first aspects of a mathematical theory are developed which might be called “First Order Probability Logic”. No attempt will be made to present this additional material in a self-contained form. We will use the same notation and terminology as introduced and explained in Scott and Krauss [8], and we will frequently refer to the theorems stated and proved in the preceding paper.


1979 ◽  
Vol 31 (3) ◽  
pp. 663-672 ◽  
Author(s):  
C. Ward Henson

The problems considered here arose in connection with the interesting use by Loeb [8] and Anderson [1], [2] of Loeb's measure construction [7] to define measures on certain topological spaces. The original problem, from which the results given here developed, was to identify precisely the family of sets on which these measures are defined.To be precise, let be a set theoretical structure and * a nonstandard extension of , as in the usual framework for nonstandard analysis (see [10]). Let X be a Hausdorff space in and stx the standard part map for X, defined on the set of nearstandard points in *X. Suppose, for example, µ is an internal, finitely additive probability measure defined on the internal subsets of *X.


2021 ◽  
Vol 13 (1) ◽  
pp. 89-97
Author(s):  
M. Paštéka

In the first part of the paper we define the notion of the density as certain type of finitely additive probability measure and the distribution function of sequences with respect to the density. Then we derive some simple criterions providing the continuity of the distribution function of given sequence. These criterions we apply to the van der Corput's sequences. The Weyl's type criterions of continuity of the distribution function are proven.


1996 ◽  
Vol 61 (2) ◽  
pp. 640-652
Author(s):  
Douglas E. Ensley

AbstractWe address the classification of the possible finitely-additive probability measures on the Boolean algebra of definable subsets of M which are invariant under the natural action of Aut(M). This pursuit requires a generalization of Shelah's forking formulas [8] to “essentially measure zero” sets and an application of Myer's “rank diagram” [5] of the Boolean algebra under consideration. The classification is completed for a large class of ℵ0-categorical structures without the independence property including those which are stable.


Sign in / Sign up

Export Citation Format

Share Document