Abscess in Frontal Lobe: Post-Mortem Findings in Case Shown at a Previous Meeting of the Section with Elizabeth O’Flynn

Author(s):  
Donald W. Winnicott ◽  
Elizabeth O’Flynn

Winnicott and O’Flynn present the case of a six-year-old at death, who had been under observation at the Queen’s Hospital for Children for several years. Besides the odd complaints from which she suffered, it was always felt that some more important disease might be present. The child always did well in hospital and at the convalescent home. Later, acute symptoms pointed directly to intracranial disease, and tuberculous meningitis was expected. A postmortem report revealed a large abscess in the right frontal lobe of the brain, involving the whole anterior half of the right hemisphere, and extremely congested kidneys.

1994 ◽  
Vol 10 (4-5) ◽  
pp. 561-571
Author(s):  
Gunnar Heuser ◽  
Ismael Mena ◽  
Francisca Alamos

Exposures to neurotoxic chemicals such as pesticides, glues, solvents, etc. are known to induce neurologic and psychiatric symptomatology. We report on 41 patients 16 young patients (6 males, 10 females, age 34 8 yrs.) and 25 elderly patients (9 males, 16 females, age 55 7 yrs). Fifteen of them were exposed to pesticides, and 29 to solvents. They were studied with quantitative and qualitative analysis of regional cerebral bood flow (rCBF), performed with 30 mCi of Xe-133 by inhalation, followed by 30 mCi of Tc-HMPAO given intravenously. Imaging was performed with a brain dedicated system, distribution of rCBF was assessed with automatic ROI definition, and HMPAO was normalized to maximal pixel activity in the brain. Results of Xe rCBF are expressed as mean and S.D. in ml/min/100g, and HMPAO as mean and S.D. uptake per ROI, and compared with age-matched controls 10 young and 20 elderly individuals. Neurotoxics HMPAO Uptake Young Elderly R. Orbital frontal R. Dorsal frontal .70 .66 p < 0.05 R. Temporal .64 p < 0.001 R. Parietal .66 .66 We conclude that patients exposed to chemicals present with diminished CBF, worse in the right hemisphere, with random presentation of areas of hypoperfusion, more prevalent in the dorsal frontal and parietal lobes. These findings are significantly different from observations in patients with chronic fatigue and depression, suggesting primary cortical effect, possibly due to a vasculitis process.


2010 ◽  
Vol 30 (6) ◽  
pp. 510-514 ◽  
Author(s):  
Marcos R.F. Mattos ◽  
Lucilene Simões-Mattos ◽  
Célso Pilati ◽  
Lúcia D.M. Silva ◽  
Sheyla F.S. Domingues

Intersexuality is a reproductive pathology that has been described in wild animals in recent years. However, its occurrence and consequences remain obscure and therefore all aspects of this reproductive disorder deserve attention. The aim of this study is to report a case of intersexuality with probable absence of gonadal tissue in the crab-eating fox (Cerdocyon thous) native to Brazil. The animal has male external genitalia, but its prepuce and penis were both hypoplastic. Because of a clinical suspicion of bilateral cryptorchidism, a laparotomy was performed and the absence of prostate and gonads were revealed. The procedure also revealed vas deferentia, extending laterally from the each side of the bladder basis to the right and left abdominal wall muscles. The animal died one month later, and post mortem examination confirmed the absence of prostatic and gonadal tissues. Muscular structures similar to uterine horns and cervix were founded macroscopically and confirmed by optic microscopy. In addition, post mortem findings corroborate with penis hypoplasia, since penile bone presence was observed. The vasa deferentia had a normal tissue structure, although hypoplastic. In conclusion, the case of a crab-eating fox (Cerdocyon thous) reported here represents a proved intersexual animal with probable absence of gonadal tissue.


2020 ◽  
Vol 223 (21) ◽  
pp. jeb232637
Author(s):  
Jiangyan Shen ◽  
Ke Fang ◽  
Ping Liu ◽  
Yanzhu Fan ◽  
Jing Yang ◽  
...  

ABSTRACTVisual lateralization is widespread for prey and anti-predation in numerous taxa. However, it is still unknown how the brain governs this asymmetry. In this study, we conducted behavioral and electrophysiological experiments to evaluate anti-predatory behaviors and dynamic brain activities in Emei music frogs (Nidirana daunchina), to explore the potential eye bias for anti-predation and the underlying neural mechanisms. To do this, predator stimuli (a model snake head and a leaf as a control) were moved around the subjects in clockwise and anti-clockwise directions at steady velocity. We counted the number of anti-predatory responses and measured electroencephalogram (EEG) power spectra for each band and brain area (telencephalon, diencephalon and mesencephalon). Our results showed that (1) no significant eye preferences could be found for the control (leaf); however, the laterality index was significantly lower than zero when the predator stimulus was moved anti-clockwise, suggesting that left-eye advantage exists in this species for anti-predation; (2) compared with no stimulus in the visual field, the power spectra of delta and alpha bands were significantly greater when the predator stimulus was moved into the left visual field anti-clockwise; and, (3) generally, the power spectra of each band in the right-hemisphere for the left visual field were higher than those in the left counterpart. These results support that the left eye mediates the monitoring of a predator in music frogs and lower-frequency EEG oscillations govern this visual lateralization.


2001 ◽  
Vol 7 (5) ◽  
pp. 586-596 ◽  
Author(s):  
JULIANA V. BALDO ◽  
ARTHUR P. SHIMAMURA ◽  
DEAN C. DELIS ◽  
JOEL KRAMER ◽  
EDITH KAPLAN

The ability to generate items belonging to categories in verbal fluency tasks has been attributed to frontal cortex. Nonverbal fluency (e.g., design fluency) has been assessed separately and found to rely on the right hemisphere or right frontal cortex. The current study assessed both verbal and nonverbal fluency in a single group of patients with focal, frontal lobe lesions and age- and education-matched control participants. In the verbal fluency task, participants generated items belonging to both letter cues (F, A, and S) and category cues (animals and boys' names). In the design fluency task, participants generated novel designs by connecting dot arrays with 4 straight lines. A switching condition was included in both verbal and design fluency tasks and required participants to switch back and forth between different sets (e.g., between naming fruits and furniture). As a group, patients with frontal lobe lesions were impaired, compared to control participants, on both verbal and design fluency tasks. Patients with left frontal lesions performed worse than patients with right frontal lesions on the verbal fluency task, but the 2 groups performed comparably on the design fluency task. Both patients and control participants were impacted similarly by the switching conditions. These results suggest that verbal fluency is more dependent on left frontal cortex, while nonverbal fluency tasks, such as design fluency, recruit both right and left frontal processes. (JINS, 2001, 7, 586–596.)


1947 ◽  
Vol 93 (391) ◽  
pp. 318-332 ◽  
Author(s):  
H. H. Fleischhacker

Commenting on the different symptoms produced by disturbances of the left hemisphere (aphasia, apraxia, etc.) and of the right (dreamy states, hallucinations, etc.), Hughlings Jackson on many occasions pointed out that there exists a “duality” of the brain; the anterior parts of the left hemisphere serving more controlled and objective purposes, the posterior parts of the right more subjective† and the anterior parts of the right serving more automatic purposes. Consequently, quoting Bastian and Rosenthal to support him, he tendered the suggestion that “mental” symptoms might be indicative of a disturbance particularly of the posterior parts of the right hemisphere (in right-handed people).


1990 ◽  
Vol 7 (4) ◽  
pp. 179-184 ◽  
Author(s):  
Ian G. Gale

Detailed neuropsychological investigation of a schizophrenic patient found a deficit in functions usually attributed to the left parieto-occipital region. Interventions designed to exercise the putatively left parieto-occipital functions (‘understanding the verbal expression of spatial relationships’) and to exercise putatively right hemisphere functions (exercises based on Edwards' — ‘Drawing on the Right Side of the Brain’) were compared. The patient demonstrated lowest levels of hallucinatory behaviour, aggressive verbal outbursts, and physical aggression during phases when right hemisphere exercises were programmed. Possible reasons for this outcome are examined.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mi Li ◽  
Hongpei Xu ◽  
Shengfu Lu

Background. In the past, studies on the lateralization of the left and right hemispheres of the brain suggested that depression is dominated by the right hemisphere of the brain, but the neural basis of this theory remains unclear. Method. Functional magnetic resonance imaging of the brain was performed in 22 depressive patients and 15 healthy controls. The differences in the mean values of the regional homogeneity (ReHo) of two groups were compared, and the low-frequency amplitudes of these differential brain regions were compared. Results. The results show that compared with healthy subjects, depressive patients had increased ReHo values in the right superior temporal gyrus, right middle temporal gyrus, left inferior temporal gyrus, left middle temporal gyrus, right middle frontal gyrus, triangular part of the right inferior frontal gyrus, orbital part of the right inferior frontal gyrus, right superior occipital gyrus, right middle occipital gyrus, bilateral anterior cingulate, and paracingulate gyri; reduced ReHo values were seen in the right fusiform gyrus, left middle occipital gyrus, left lingual gyrus, and left inferior parietal except in the supramarginal and angular gyri. Conclusions. The results show that regional homogeneity mainly occurs in the right brain, and the overall performance of the brain is such that right hemisphere synchronization is enhanced while left hemisphere synchronization is weakened. ReHo abnormalities in the resting state can predict abnormalities in individual neurological activities that reflect changes in the structure and function of the brain; abnormalities shown with this indicator are the neuronal basis for the phenomenon that the right hemisphere of the brain has a dominant effect on depression.


2016 ◽  
Vol 26 (06) ◽  
pp. 1650022 ◽  
Author(s):  
Fangzhou Xu ◽  
Weidong Zhou ◽  
Yilin Zhen ◽  
Qi Yuan ◽  
Qi Wu

The feature extraction and classification of brain signal is very significant in brain–computer interface (BCI). In this study, we describe an algorithm for motor imagery (MI) classification of electrocorticogram (ECoG)-based BCI. The proposed approach employs multi-resolution fractal measures and local binary pattern (LBP) operators to form a combined feature for characterizing an ECoG epoch recording from the right hemisphere of the brain. A classifier is trained by using the gradient boosting in conjunction with ordinary least squares (OLS) method. The fractal intercept, lacunarity and LBP features are extracted to classify imagined movements of either the left small finger or the tongue. Experimental results on dataset I of BCI competition III demonstrate the superior performance of our method. The cross-validation accuracy and accuracy is 90.6% and 95%, respectively. Furthermore, the low computational burden of this method makes it a promising candidate for real-time BCI systems.


2021 ◽  
Vol 4 ◽  
Author(s):  
Sergio Ledesma ◽  
Mario-Alberto Ibarra-Manzano ◽  
Dora-Luz Almanza-Ojeda ◽  
Pascal Fallavollita ◽  
Jason Steffener

In this study, Artificial Intelligence was used to analyze a dataset containing the cortical thickness from 1,100 healthy individuals. This dataset had the cortical thickness from 31 regions in the left hemisphere of the brain as well as from 31 regions in the right hemisphere. Then, 62 artificial neural networks were trained and validated to estimate the number of neurons in the hidden layer. These neural networks were used to create a model for the cortical thickness through age for each region in the brain. Using the artificial neural networks and kernels with seven points, numerical differentiation was used to compute the derivative of the cortical thickness with respect to age. The derivative was computed to estimate the cortical thickness speed. Finally, color bands were created for each region in the brain to identify a positive derivative, that is, a part of life with an increase in cortical thickness. Likewise, the color bands were used to identify a negative derivative, that is, a lifetime period with a cortical thickness reduction. Regions of the brain with similar derivatives were organized and displayed in clusters. Computer simulations showed that some regions exhibit abrupt changes in cortical thickness at specific periods of life. The simulations also illustrated that some regions in the left hemisphere do not follow the pattern of the same region in the right hemisphere. Finally, it was concluded that each region in the brain must be dynamically modeled. One advantage of using artificial neural networks is that they can learn and model non-linear and complex relationships. Also, artificial neural networks are immune to noise in the samples and can handle unseen data. That is, the models based on artificial neural networks can predict the behavior of samples that were not used for training. Furthermore, several studies have shown that artificial neural networks are capable of deriving information from imprecise data. Because of these advantages, the results obtained in this study by the artificial neural networks provide valuable information to analyze and model the cortical thickness.


Sign in / Sign up

Export Citation Format

Share Document