scholarly journals Localizing merging black holes with sub-arcsecond precision using gravitational-wave lensing

2020 ◽  
Vol 498 (3) ◽  
pp. 3395-3402 ◽  
Author(s):  
Otto A Hannuksela ◽  
Thomas E Collett ◽  
Mesut Çalışkan ◽  
Tjonnie G F Li

ABSTRACT The current gravitational-wave (GW) localization methods rely mainly on sources with electromagnetic counterparts. Unfortunately, a binary black hole does not emit light. Due to this, it is generally not possible to localize these objects precisely. However, strongly lensed gravitational waves, which are forecasted in this decade, could allow us to localize the binary by locating its lensed host galaxy. Identifying the correct host galaxy is challenging because there are hundreds to thousands of other lensed galaxies within the sky area spanned by the GW observation. However, we can constrain the lensing galaxy’s physical properties through both GW and electromagnetic observations. We show that these simultaneous constraints allow one to localize quadruply lensed waves to one or at most a few galaxies with the LIGO/Virgo/Kagra network in typical scenarios. Once we identify the host, we can localize the binary to two sub-arcsec regions within the host galaxy. Moreover, we demonstrate how to use the system to measure the Hubble constant as a proof-of-principle application.

2021 ◽  
Vol 2089 (1) ◽  
pp. 012027
Author(s):  
Subhrangshu Adhikary ◽  
Saikat Banerjee

Abstract The General Theory of Relativity, proposed by Albert Einstein theoretically predicted that very large accelerating mass creates ripples in spacetime which is the strongest for merging binary black hole system and the ripples can travel billions of light-years and these ripples are called Gravitational Waves. By the time these waves reach Earth, they become very faint and can’t be detected with regular methods. For this, LIGO has created specialized detectors based on the laser interference principle to detect strains caused by gravitational waves in e-19 scale. GW190521 is a gravitational wave event recorded on 21 May 2019 at 03:02:29 UTC and caused by the merger of two black holes of 85M© and 66 M© whose progenitor was the largest ever recorded. Throughout literature, very few amounts of autonomous black hole identification models have been made because of limited data availability. This experiment proposes methods for autonomous identification of black holes by using an unsupervised machine learning algorithm called Agglomerative Clustering with very little data to train which can adapt quickly to gravitational wave events. The model could be easily deployed near laser interferometric observatories for autonomous black hole identification with minimal effort.


2020 ◽  
Vol 498 (2) ◽  
pp. 1905-1910 ◽  
Author(s):  
Gregory Ashton ◽  
Eric Thrane

ABSTRACT The gravitational-wave candidate GW151216 is a proposed binary black hole event from the first observing run of the Advanced LIGO detectors. Not identified as a bona fide signal by the LIGO–Virgo collaboration, there is disagreement as to its authenticity, which is quantified by pastro, the probability that the event is astrophysical in origin. Previous estimates of pastro from different groups range from 0.18 to 0.71, making it unclear whether this event should be included in population analyses, which typically require pastro > 0.5. Whether GW151216 is an astrophysical signal or not has implications for the population properties of stellar-mass black holes and hence the evolution of massive stars. Using the astrophysical odds, a Bayesian method that uses the signal coherence between detectors and a parametrized model of non-astrophysical detector noise, we find that pastro = 0.03, suggesting that GW151216 is unlikely to be a genuine signal. We also analyse GW150914 (the first gravitational-wave detection) and GW151012 (initially considered to be an ambiguous detection) and find pastro values of 1 and 0.997, respectively. We argue that the astrophysical odds presented here improve upon traditional methods for distinguishing signals from noise.


2020 ◽  
Vol 35 (31) ◽  
pp. 2050205
Author(s):  
Aung Naing Win ◽  
Yu-Ming Chu ◽  
Hasrat Hussain Shah ◽  
Syed Zaheer Abbas ◽  
Munawar Shah

A Satellite Fermi GBM detected recent putative short Gamma Ray Bursts (GRBs) in coincident with the gravitational wave signal GW 150914 produced by the merger of binary black hole (BH). If at least one BH possess magnetic monopole charge in the binary BH system then the short-duration GRBs may produce during the final phase of a binary BH merger. The detection of gravitational waves GW 150914, GW 151226 and LVT 151012 by LIGO gave the evidence that merging of the compact object like binary BH often happens in our universe. In this paper, we report the qualitative model to discuss the generation of electromagnetic radiation from the merging of two BHs with equal masses and at least one BH carrying the magnetic monopole charge in the binary system. In this model, BH possess a magnetic monopole charge that may not be neutralized before the coalescence. During the inspiralling process, the magnetic monopole charge on the BH would produced the electric dipole moment. Short duration GRB would produce by the rapidly evolution of the electric dipole moment which may detectable on Earth. We predict that this model would be beneficial in the future to explain the generation of gravitational wave (GW) plus a electromagnetic signal of multi-wavelength from mergers of magnetically charged BHs.


2011 ◽  
Vol 03 ◽  
pp. 408-416
Author(s):  
H. P. DE OLIVEIRA ◽  
E. L. RODRIGUES

We analyze the non-frontal collisions of two Schwarzschild black holes in the realm of general Robinson-Trautman spacetimes using a numerical code based on spectral methods. In this process, two black holes collide and form a single black hole while a certain amount of the initial mass is carried away by gravitational waves. We determined the forms of the gravitational waves and the efficiency of this process for frontal and non-frontal collisions. We found numerical evidence that the distribution of mass qloss can be described by a function typically used in nonextensive statistics.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Adrian Ka-Wai Chung ◽  
Mairi Sakellariadou

AbstractWe present a method to constrain the temperature of astrophysical black holes through detecting the inspiral phase of binary black hole coalescences. At sufficient separation, inspiraling black holes can be regarded as isolated objects, hence their temperature can still be defined. Due to their intrinsic radiation, inspiraling black holes lose part of their masses during the inspiral phase. As a result, coalescence speeds up, introducing a correction to the orbital phase. We show that this dephasing may allow us to constrain the temperature of inspiraling black holes through gravitational-wave detection. Using the binary black-hole coalescences of the first two observing runs of the Advanced LIGO and Virgo detectors, we constrain the temperature of parental black holes to be less than about $$ 10^9 $$ 10 9  K. Such a constraint corresponds to luminosity of about $$ 10^{-16} M_{\odot }~\mathrm{s}^{-1} $$ 10 - 16 M ⊙ s - 1 for a black hole of $$ 20 M_{\odot } $$ 20 M ⊙ , which is about 20 orders of magnitude below the peak luminosity of the corresponding gravitational-wave event, indicating no evidence for strong quantum-gravity effects through the detection of the inspiral phase.


2017 ◽  
Vol 32 (39) ◽  
pp. 1730035 ◽  
Author(s):  
Keith Riles

Gravitational wave astronomy opened dramatically in September 2015 with the LIGO discovery of a distant and massive binary black hole coalescence. The more recent discovery of a binary neutron star merger, followed by a gamma ray burst (GRB) and a kilonova, reinforces the excitement of this new era, in which we may soon see other sources of gravitational waves, including continuous, nearly monochromatic signals. Potential continuous wave (CW) sources include rapidly spinning galactic neutron stars and more exotic possibilities, such as emission from axion Bose Einstein “clouds” surrounding black holes. Recent searches in Advanced LIGO data are presented, and prospects for more sensitive future searches are discussed.


2020 ◽  
Vol 498 (3) ◽  
pp. 4287-4294
Author(s):  
Jongsuk Hong ◽  
Abbas Askar ◽  
Mirek Giersz ◽  
Arkadiusz Hypki ◽  
Suk-Jin Yoon

ABSTRACT The dynamical formation of black hole binaries in globular clusters that merge due to gravitational waves occurs more frequently in higher stellar density. Meanwhile, the probability to form intermediate mass black holes (IMBHs) also increases with the density. To explore the impact of the formation and growth of IMBHs on the population of stellar mass black hole binaries from globular clusters, we analyse the existing large survey of Monte Carlo globular cluster simulation data (mocca-survey Database I). We show that the number of binary black hole mergers agrees with the prediction based on clusters’ initial properties when the IMBH mass is not massive enough or the IMBH seed forms at a later time. However, binary black hole formation and subsequent merger events are significantly reduced compared to the prediction when the present-day IMBH mass is more massive than ${\sim}10^4\, \rm M_{\odot }$ or the present-day IMBH mass exceeds about 1 per cent of cluster’s initial total mass. By examining the maximum black hole mass in the system at the moment of black hole binary escaping, we find that ∼90 per cent of the merging binary black holes escape before the formation and growth of the IMBH. Furthermore, large fraction of stellar mass black holes are merged into the IMBH or escape as single black holes from globular clusters in cases of massive IMBHs, which can lead to the significant underpopulation of binary black holes merging with gravitational waves by a factor of 2 depending on the clusters’ initial distributions.


2019 ◽  
Vol 490 (4) ◽  
pp. 5210-5216 ◽  
Author(s):  
Isobel M Romero-Shaw ◽  
Paul D Lasky ◽  
Eric Thrane

ABSTRACT Binary black holes are thought to form primarily via two channels: isolated evolution and dynamical formation. The component masses, spins, and eccentricity of a binary black hole system provide clues to its formation history. We focus on eccentricity, which can be a signature of dynamical formation. Employing the spin-aligned eccentric waveform model seobnre, we perform Bayesian inference to measure the eccentricity of binary black hole merger events in the first gravitational-wave transient catalogue of LIGO and Virgo. We find that all of these events are consistent with zero eccentricity. We set upper limits on eccentricity ranging from 0.02 to 0.05 with 90  per cent confidence at a reference frequency of $10\, {\rm Hz}$. These upper limits do not significantly constrain the fraction of LIGO–Virgo events formed dynamically in globular clusters, because only $\sim 5{{\ \rm per\ cent}}$ are expected to merge with measurable eccentricity. However, with the gravitational-wave transient catalogue set to expand dramatically over the coming months, it may soon be possible to significantly constrain the fraction of mergers taking place in globular clusters using eccentricity measurements.


Author(s):  
Sayak Datta ◽  
Sukanta Bose

AbstractWe study the quasi-normal modes (QNMs) of static, spherically symmetric black holes in f(R) theories. We show how these modes in theories with non-trivial f(R) are fundamentally different from those in general relativity. In the special case of $$f(R) = \alpha R^2$$f(R)=αR2 theories, it has been recently argued that iso-spectrality between scalar and vector modes breaks down. Here, we show that such a break down is quite general across all f(R) theories, as long as they satisfy $$f''(0)/(1+f''(0)) \ne 0$$f′′(0)/(1+f′′(0))≠0, where a prime denotes derivative of the function with respect to its argument. We specifically discuss the origin of the breaking of isospectrality. We also show that along with this breaking the QNMs receive a correction that arises when $$f''(0)/(1+f'(0)) \ne 0$$f′′(0)/(1+f′(0))≠0 owing to the inhomogeneous term that it introduces in the mode equation. We discuss how these differences affect the “ringdown” phase of binary black hole mergers and the possibility of constraining f(R) models with gravitational-wave observations. We also find that even though the iso-spectrality is broken in f(R) theories, in general, nevertheless in the corresponding scalar-tensor theories in the Einstein frame it is unbroken.


Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 1017
Author(s):  
Bogeun Gwak

We investigate the energy of the gravitational wave from a binary black hole merger by the coalescence of two Kerr black holes with an orbital angular momentum. The coalescence is constructed to be consistent with particle absorption in the limit in which the primary black hole is sufficiently large compared with the secondary black hole. In this limit, we analytically obtain an effective gravitational spin–orbit interaction dependent on the alignments of the angular momenta. Then, binary systems with various parameters including equal masses are numerically analyzed. According to the numerical analysis, the energy of the gravitational wave still depends on the effective interactions, as expected from the analytical form. In particular, we ensure that the final black hole obtains a large portion of its spin angular momentum from the orbital angular momentum of the initial binary black hole. To estimate the angular momentum released by the gravitational wave in the actual binary black hole, we apply our results to observations at the Laser Interferometer Gravitational-Wave Observatory: GW150914, GW151226, GW170104, GW170608 and GW170814.


Sign in / Sign up

Export Citation Format

Share Document