binary neutron star
Recently Published Documents


TOTAL DOCUMENTS

422
(FIVE YEARS 205)

H-INDEX

62
(FIVE YEARS 17)

Author(s):  
Luca Baiotti

AbstractI review the current global status of research on gravitational waves emitted from mergers of binary neutron star systems, focusing on general-relativistic simulations and their use to interpret data from the gravitational-wave detectors, especially in relation to the equation of state of compact stars.


2022 ◽  
Vol 924 (2) ◽  
pp. 54
Author(s):  
Polina Petrov ◽  
Leo P. Singer ◽  
Michael W. Coughlin ◽  
Vishwesh Kumar ◽  
Mouza Almualla ◽  
...  

Abstract Searches for electromagnetic counterparts of gravitational-wave signals have redoubled since the first detection in 2017 of a binary neutron star merger with a gamma-ray burst, optical/infrared kilonova, and panchromatic afterglow. Yet, one LIGO/Virgo observing run later, there has not yet been a second, secure identification of an electromagnetic counterpart. This is not surprising given that the localization uncertainties of events in LIGO and Virgo’s third observing run, O3, were much larger than predicted. We explain this by showing that improvements in data analysis that now allow LIGO/Virgo to detect weaker and hence more poorly localized events have increased the overall number of detections, of which well-localized, gold-plated events make up a smaller proportion overall. We present simulations of the next two LIGO/Virgo/KAGRA observing runs, O4 and O5, that are grounded in the statistics of O3 public alerts. To illustrate the significant impact that the updated predictions can have, we study the follow-up strategy for the Zwicky Transient Facility. Realistic and timely forecasting of gravitational-wave localization accuracy is paramount given the large commitments of telescope time and the need to prioritize which events are followed up. We include a data release of our simulated localizations as a public proposal planning resource for astronomers.


2022 ◽  
Vol 21 (12) ◽  
pp. 308
Author(s):  
Mu-Xin Liu ◽  
Hui Tong ◽  
Yi-Ming Hu ◽  
Man-Leong Chan ◽  
Zhu Liu ◽  
...  

Abstract The multi-messenger observation of coalescing compact binary systems promises great scientific treasure. However, synthesising observations from both gravitational wave and electromagnetic channels remains challenging. In the context of the day-to-week long emission from a macronova, the binary neutron star merger GW170817 remains the only event with successful electromagnetic followup. In this manuscript, we explore the possibility of using the early stage X-ray afterglow to search for the electromagnetic counterpart of a gravitational wave event. Two algorithms, the simple and straightforward sequential observation (SO) and the step-wise optimizing local optimization are considered and applied to some simulated events. We consider the WXT from the proposed Einstein Probe as a candidate X-ray telescope, which has a very wide field of view of 3600 deg2. Benefiting from the large field of view and high sensitivity, we find that the SO algorithm not only is easy to implement, but also promises a good chance of actual detection.


Author(s):  
Panagiotis Iosif ◽  
Nikolaos Stergioulas

Abstract The emergence of novel differential rotation laws that can reproduce the rotational profile of binary neutron star merger remnants has opened the way for the construction of equilibrium models with properties that resemble those of remnants in numerical simulations. We construct models of merger remnants, using a recently introduced 4-parameter differential rotation law and three tabulated, zero-temperature equations of state. The models have angular momenta that are determined by empirical relations, constructed through numerical simulations. After a systematic exploration of the parameter space of merger remnant equilibrium sequences, which includes the determination of turning points along constant angular momentum sequences, we find that a particular rotation law can reproduce the threshold mass to prompt collapse to a black hole with a relative difference of only $\sim 1\%$ with respect to numerical simulations, in all cases considered. Furthermore, our results indicate a possible correlation between the compactness of equilibrium models of remnants at the threshold mass and the compactness of maximum-mass nonrotating models. Another key prediction of binary neutron star merger simulations is a relatively slowly rotating inner region, where the angular velocity Ω (as measured by an observer at infinity) is mostly due to the frame dragging angular velocity ω. In our investigation of the parameter space of the adopted differential rotation law, we naturally find quasi-spherical (Type A) remnant models with this property. Our investigation clarifies the impact of the differential rotation law and of the equation of state on key properties of binary neutron star remnants and lays the groundwork for including thermal effects in future studies.


2021 ◽  
Vol 923 (1) ◽  
pp. 55
Author(s):  
Muhammad Akashi ◽  
Noam Soker

Abstract We simulate the influence of the energy that the merger process of two neutron stars (NSs) releases inside a red supergiant (RSG) star on the RSG envelope inner to the merger location. In the triple-star common envelope evolution (CEE) that we consider, a tight binary system of two NSs spiraling in inside an RSG envelope and because of mass accretion and dynamical friction, the two NSs merge. We deposit merger-explosion energies of 3 × 1050 and 1051 erg at distances of 25 and 50 R ⊙ from the center of the RSG, and with the three-dimensional hydrodynamical code FLASH we follow the evolution of the RSG envelope in inner regions. For the parameters we explore, we find that more than 90% of the RSG envelope mass inward of the merger site stays bound to the RSG. NSs that experience CEE are likely to accrete RSG envelope mass through an accretion disk that launches jets. These jets power a luminous transient event, a common envelope jets supernova (CEJSN). The merger process adds to the CEJSN energy. Our finding implies that the interaction of the merger product, a massive NS or a BH, with the envelope can continue to release more energy, both by further inspiraling and by mass accretion by the merger product. Massive RSG envelopes can force the merger product to spiral into the core of the RSG, leading to an even more energetic CEJSN.


2021 ◽  
Vol 922 (1) ◽  
pp. L19
Author(s):  
Samuel D. Tootle ◽  
L. Jens Papenfort ◽  
Elias R. Most ◽  
Luciano Rezzolla

Abstract The lifetime of the remnant produced by the merger of two neutron stars can provide a wealth of information on the equation of state of nuclear matter and on the processes leading to the electromagnetic counterpart. Hence, it is essential to determine when this lifetime is the shortest, corresponding to when the remnant has a mass equal to the threshold mass, M th, to prompt collapse to a black hole. We report on the results of more than 360 simulations of merging neutron-star binaries covering 40 different configurations differing in mass ratio and spin of the primary. Using this data, we have derived a quasi-universal relation for M th and expressed its dependence on the mass ratio and spin of the binary. The new expression recovers the results of Koeppel et al. for equal-mass, irrotational binaries and reveals that M th can increase (decrease) by 5% (10%) for binaries that have spins aligned (antialigned) with the orbital angular momentum and provides evidence for a nonmonotonic dependence of M th on the mass asymmetry in the system. Finally, we extend to unequal masses and spinning binaries the lower limits that can be set on the stellar radii once a neutron star binary is detected, illustrating how the merger of an unequal-mass, rapidly spinning binary can significantly constrain the allowed values of the stellar radii.


2021 ◽  
Vol 921 (2) ◽  
pp. 161
Author(s):  
Coleman Dean ◽  
Rodrigo Fernández ◽  
Brian D. Metzger

Abstract We examine the effect of spatial resolution on initial mass ejection in grid-based hydrodynamic simulations of binary neutron star mergers. The subset of the dynamical ejecta with velocities greater than ∼0.6c can generate an ultraviolet precursor to the kilonova on approximately hour timescales and contribute to a years long nonthermal afterglow. Previous work has found differing amounts of this fast ejecta, by one to two orders of magnitude, when using particle-based or grid-based hydrodynamic methods. Here, we carry out a numerical experiment that models the merger as an axisymmetric collision in a corotating frame, accounting for Newtonian self-gravity, inertial forces, and gravitational wave losses. The lower computational cost allows us to reach spatial resolutions as high as 4 m, or ∼3 × 10−4 of the stellar radius. We find that fast ejecta production converges to within 10% for a cell size of 20 m. This suggests that fast ejecta quantities found in existing grid-based merger simulations are unlikely to increase to the level needed to match particle-based results upon further resolution increases. The resulting neutron-powered precursors are in principle detectable out to distances ≲200 Mpc with upcoming facilities.We also find that head-on collisions at the freefall speed, relevant for eccentric mergers, yield fast and slow ejecta quantities of order 10−2 M ⊙, with a kilonova signature distinct from that of quasi-circular mergers.


2021 ◽  
Vol 922 (1) ◽  
pp. 76
Author(s):  
Alexander H. Nitz ◽  
Collin D. Capano ◽  
Sumit Kumar ◽  
Yi-Fan Wang ◽  
Shilpa Kastha ◽  
...  

Abstract We present the third open gravitational-wave catalog (3-OGC) of compact-binary coalescences, based on the analysis of the public LIGO and Virgo data from 2015 through 2019 (O1, O2, O3a). Our updated catalog includes a population of 57 observations, including 4 binary black hole mergers that had not been previously reported. This consists of 55 binary black hole mergers and the 2 binary neutron star mergers, GW170817 and GW190425. We find no additional significant binary neutron star or neutron star–black hole merger events. The most confident new detection is the binary black hole merger GW190925_232845, which was observed by the LIGO–Hanford and Virgo observatories with  astro > 0.99 ; its primary and secondary component masses are 20.2 − 2.5 + 3.9 M ⊙ and 15.6 − 2.6 + 2.1 M ⊙ , respectively. We estimate the parameters of all binary black hole events using an up-to-date waveform model that includes both subdominant harmonics and precession effects. To enable deep follow up as our understanding of the underlying populations evolves, we make available our comprehensive catalog of events, including the subthreshold population of candidates, and the posterior samples of our source parameter estimates.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 394
Author(s):  
Elena Cuoco ◽  
Barbara Patricelli ◽  
Alberto Iess ◽  
Filip Morawski

A major boost in the understanding of the universe was given by the revelation of the first coalescence event of two neutron stars (GW170817) and the observation of the same event across the entire electromagnetic spectrum. With third-generation gravitational wave detectors and the new astronomical facilities, we expect many multi-messenger events of the same type. We anticipate the need to analyse the data provided to us by such events not only to fulfil the requirements of real-time analysis, but also in order to decipher the event in its entirety through the information emitted in the different messengers using machine learning. We propose a change in the paradigm in the way we do multi-messenger astronomy, simultaneously using the complete information generated by violent phenomena in the Universe. What we propose is the application of a multimodal machine learning approach to characterize these events.


Sign in / Sign up

Export Citation Format

Share Document