scholarly journals Central kinematics of the Galactic globular cluster M80

Author(s):  
Fabian Göttgens ◽  
Sebastian Kamann ◽  
Holger Baumgardt ◽  
Stefan Dreizler ◽  
Benjamin Giesers ◽  
...  

Abstract We use spectra observed with the integral-field spectrograph MUSE to reveal the central kinematics of the Galactic globular cluster Messier 80 (M80, NGC 6093). Using observations obtained with the recently commissioned narrow-field mode of MUSE, we are able to analyse 932 stars in the central 7.5 arcsec by 7.5 arcsec of the cluster for which no useful spectra previously existed. Mean radial velocities of individual stars derived from the spectra are compared to predictions from axisymmetric Jeans models, resulting in radial profiles of the velocity dispersion, the rotation amplitude, and the mass-to-light ratio. The new data allow us to search for an intermediate-mass black hole (IMBH) in the centre of the cluster. Our Jeans model finds two similarly probable solutions around different dynamical cluster centres. The first solution has a centre close to the photometric estimates available in the literature and does not need an IMBH to fit the observed kinematics. The second solution contains a location of the cluster centre that is offset by about 2.4 arcsec from the first one and it needs an IMBH mass of $4600^{+1700}_{-1400}~\text{M}_\odot {}$. N-body models support the existence of an IMBH in this cluster with a mass of up to 6000 M⊙ in this cluster, although models without an IMBH provide a better fit to the observed surface brightness profile. They further indicate that the cluster has lost nearly all stellar-mass black holes. We further discuss the detection of two potential high-velocity stars with radial velocities of 80 to 90 km s−1 relative to the cluster mean.

2019 ◽  
Vol 488 (4) ◽  
pp. 5340-5351 ◽  
Author(s):  
H Baumgardt ◽  
C He ◽  
S M Sweet ◽  
M Drinkwater ◽  
A Sollima ◽  
...  

ABSTRACT We compare the results of a large grid of N-body simulations with the surface brightness and velocity dispersion profiles of the globular clusters ω Cen and NGC 6624. Our models include clusters with varying stellar-mass black hole retention fractions and varying masses of a central intermediate-mass black hole (IMBH). We find that an $\sim 45\, 000$ M⊙ IMBH, whose presence has been suggested based on the measured velocity dispersion profile of ω Cen, predicts the existence of about 20 fast-moving, m > 0.5 M⊙, main-sequence stars with a (1D) velocity v > 60 km s−1 in the central 20 arcsec of ω Cen. However, no such star is present in the HST/ACS proper motion catalogue of Bellini et al. (2017), strongly ruling out the presence of a massive IMBH in the core of ω Cen. Instead, we find that all available data can be fitted by a model that contains 4.6 per cent of the mass of ω Cen in a centrally concentrated cluster of stellar-mass black holes. We show that this mass fraction in stellar-mass BHs is compatible with the predictions of stellar evolution models of massive stars. We also compare our grid of N-body simulations with NGC 6624, a cluster recently claimed to harbour a 20 000 M⊙ black hole based on timing observations of millisecond pulsars. However, we find that models with MIMBH > 1000 M⊙ IMBHs are incompatible with the observed velocity dispersion and surface brightness profile of NGC 6624, ruling out the presence of a massive IMBH in this cluster. Models without an IMBH provide again an excellent fit to NGC 6624.


2014 ◽  
Vol 10 (S312) ◽  
pp. 223-226
Author(s):  
Paolo Bianchini ◽  
Mark Norris ◽  
Glenn van de Ven ◽  
Eva Schinnerer

AbstractThe detection of intermediate mass black holes (IMBHs) in globular clusters has been hotly debated, with different observational methods delivering different outcomes for the same object. In order to understand these discrepancies, we construct detailed mock integral field spectroscopy (IFU) observations of globular clusters, starting from realistic Monte Carlo cluster simulations. The output is a data cube of spectra in a given field-of-view that can be analyzed in the same manner as real observations and compared to other (resolved) kinematic measurement methods. We show that the main discrepancies arise because the luminosity-weighted IFU observations can be strongly biased by the presence of a few bright stars that introduce a scatter in velocity dispersion measurements of several km s−1. We show that this intrinsic scatter can prevent a sound assessment of the central kinematics, and therefore should be fully taken into account to correctly interpret the signature of an IMBH.


2015 ◽  
Vol 12 (S316) ◽  
pp. 240-245
Author(s):  
Nora Lützgendorf ◽  
Markus Kissler-Patig ◽  
Karl Gebhardt ◽  
Holger Baumgardt ◽  
Diederik Kruijssen ◽  
...  

AbstractThe study of intermediate-mass black holes (IMBHs) is a young and promising field of research. If IMBH exist, they could explain the rapid growth of supermassive black holes by acting as seeds in the early stage of galaxy formation. Formed by runaway collisions of massive stars in young and dense stellar clusters, intermediate-mass black holes could still be present in the centers of globular clusters, today. We measured the inner kinematic profiles with integral-field spectroscopy for 10 Galactic globular cluster and determined masses or upper limits of central black holes. In combination with literature data we further studied the positions of our results on known black-hole scaling relations (such as M• − σ) and found a similar but flatter correlation for IMBHs. Applying cluster evolution codes, the change in the slope could be explained with the stellar mass loss occurring in clusters in a tidal field over its life time. Furthermore, we present results from several numerical simulations on the topic of IMBHs and integral field units (IFUs). N-body simulations were used to simulate IFU data cubes. For the specific case of NGC 6388 we simulated two different IFU techniques and found that velocity dispersion measurements from individual velocities are strongly biased towards lower values due to blends of neighbouring stars and background light. In addition, we use the Astrophysical Multipurpose Software Environment (AMUSE) to combine gravitational physics, stellar evolution and hydrodynamics to simulate the accretion of stellar winds onto a black hole. We find that the S-stars need to provide very strong winds in order to explain the accretion rate in the galactic center.


1995 ◽  
Vol 149 ◽  
pp. 282-287 ◽  
Author(s):  
Eric Emsellem ◽  
Roland Bacon ◽  
Guy Monnet

AbstractWe conducted an observational program using the TIGER integral field spectrograph to study the dynamical structure of nearby galactic nuclei. We already obtained new original results on three of the best ”Black Holes Candidates”: M 32, M 31 and M 104. Their nuclei exhibit complex morphologies and unusual dynamical properties such as: asymmetries, anisotropy, triaxiality which would have been impossible to detect with a ”classical“ spectrograph.


Author(s):  
Keoikantse Moses Mogotsi ◽  
Alessandro B Romeo

Abstract The stellar velocity dispersion, σ, is a quantity of crucial importance for spiral galaxies, where it enters fundamental dynamical processes such as gravitational instability and disc heating. Here we analyse a sample of 34 nearby spirals from the Calar Alto Legacy Integral Field Area (CALIFA) spectroscopic survey, deproject the line-of-sight σ to σR and present reliable radial profiles of σR as well as accurate measurements of ⟨σR⟩, the radial average of σR over one effective (half-light) radius. We show that there is a trend for σR to increase with decreasing R, that ⟨σR⟩ correlates with stellar mass (M⋆) and tested correlations with other galaxy properties. The most significant and strongest correlation is the one with M⋆: $\langle \sigma _{R}\rangle \propto M_{\star }^{0.5}$. This tight scaling relation is applicable to spiral galaxies of type Sa–Sd and stellar mass M⋆ ≈ 109.5–1011.5 M⊙. Simple models that relate σR to the stellar surface density and disc scale length roughly reproduce that scaling, but overestimate ⟨σR⟩ significantly.


2019 ◽  
Vol 14 (S351) ◽  
pp. 400-403
Author(s):  
Holger Baumgardt ◽  
Antonio Sollima ◽  
Michael Hilker

AbstractWe investigate whether the globular clusters 47 Tuc, ω Cen and NGC 6624 contain intermediate-mass black holes (IMBHs) by fitting a large grid of N-body simulations against their surface density and velocity dispersion profiles. In our simulations we vary the initial cluster size, the initial mass function and the initial density profile of the clusters as well as the mass fraction of a central intermediate-mass black hole. We find that the surface density and velocity dispersion profiles of all three clusters can be better reproduced by models that do not contain a central IMBH than by any of our IMBH models. If ω Cen and NGC 6624 contain any IMBHs at all, they have to be significantly less massive than suggested in the past.


1991 ◽  
Vol 148 ◽  
pp. 211-212
Author(s):  
G. Meylan ◽  
P. Dubath ◽  
M. Mayor

The projected velocity dispersion in the core of the Large Magellanic Cloud (LMC) intermediate-age globular cluster NGC 1978 is deduced from integrated light spectra. A numerical cross-correlation technique gives a projected velocity dispersion σp(core) = 5.8±1.2 km s−1. Multimass anisotropic King-Michie dynamical models are applied to the observational constraints given by the surface brightness profile and the above central projected velocity dispersion. Depending on the model, the values obtained for the total mass of the cluster range from 0.36 to 1.44 106M⊙, corresponding to mass-to-light ratios M/LV ranging from 1.2 to 4.2 (M/LV)⊙, values typical of galactic globular clusters.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 20-25 ◽  
Author(s):  
Lodovico Coccato ◽  

AbstractThe kinematics and dynamical properties of galaxy stellar halos are difficult to measure, given the faint surface brightness that characterizes these regions. Gas-rich systems such as spiral galaxies can be probed using the radio Hi emission. Early-type galaxies contain less gas, therefore alternative kinematic tracers need to be used. Planetary Nebulae (PNe) can be easily detected far out in the halo thanks to their bright [O iii] emission at 5007 Å. It is therefore possible to map the halo kinematics also in early-type galaxies, typically out to 5 effective radii or beyond. Thanks to the recent spectroscopic surveys targeting extra-galactic PNe, we can now rely on few tens of galaxies where the kinematics of the stellar halos are measured. I will discuss the most important results: (a) the relation of the stellar surface brightness and the PNe number density; (b) the velocity and velocity dispersion two-dimensional fields; (c) the radial profiles of angular momentum; and (d) the relation between the derived kinematics physical properties of the host galaxies.


Author(s):  
Lodovico Coccato ◽  

AbstractThe kinematics and dynamical properties of galaxy stellar halos are difficult to measure, given the faint surface brightness that characterizes these regions. Gas-rich systems such as spiral galaxies can be probed using the radio Hi emission. Early-type galaxies contain less gas, therefore alternative kinematic tracers need to be used. Planetary Nebulae (PNe) can be easily detected far out in the halo thanks to their bright [Oiii] emission at 5007 Å. It is therefore possible to map the halo kinematics also in early-type galaxies, typically out to 5 effective radii or beyond. Thanks to the recent spectroscopic surveys targeting extra-galactic PNe, we can now rely on few tens of galaxies where the kinematics of the stellar halos are measured. I will discuss the most important results: (a) the relation of the stellar surface brightness and the PNe number density; (b) the velocity and velocity dispersion two-dimensional fields; (c) the radial profiles of angular momentum; and (d) the relation between the derived kinematics physical properties of the host galaxies.


2009 ◽  
Vol 5 (H15) ◽  
pp. 81-81
Author(s):  
M. Cappellari ◽  
N. Scott ◽  
K. Alatalo ◽  
L. Blitz ◽  
M. Bois ◽  
...  

Early-type galaxies (ETGs) satisfy a now classic scaling relation Re ∝ σ1.2eI−0.8e, the Fundamental Plane (FP; Djorgovski & Davis 1987; Dressler et al. 1987), between their size, stellar velocity dispersion and mean surface brightness. A significant effort has been devoted in the past twenty years to try to understand why the coefficients of the relation are not the ones predicted by the virial theorem Re ∝ σ2eI−1e.


Sign in / Sign up

Export Citation Format

Share Document