scholarly journals Ancient DNA Evidence from China Reveals the Expansion of Pacific Dogs

2020 ◽  
Vol 37 (5) ◽  
pp. 1462-1469 ◽  
Author(s):  
Ming Zhang ◽  
Guoping Sun ◽  
Lele Ren ◽  
Haibing Yuan ◽  
Guanghui Dong ◽  
...  

Abstract The ancestral homeland of Australian dingoes and Pacific dogs is proposed to be in South China. However, the location and timing of their dispersal and relationship to dog domestication is unclear. Here, we sequenced 7,000- to 2,000-year-old complete mitochondrial DNA (mtDNA) genomes of 27 ancient canids (one gray wolf and 26 domestic dogs) from the Yellow River and Yangtze River basins (YYRB). These are the first complete ancient mtDNA of Chinese dogs from the cradle of early Chinese civilization. We found that most ancient dogs (18/26) belong to the haplogroup A1b lineage that is found in high frequency in present-day Australian dingoes and precolonial Pacific Island dogs but low frequency in present-day China. Particularly, a 7,000-year-old dog from the Tianluoshan site in Zhejiang province possesses a haplotype basal to the entire haplogroup A1b lineage. We propose that A1b lineage dogs were once widely distributed in the YYRB area. Following their dispersal to South China, and then into Southeast Asia, New Guinea and remote Oceania, they were largely replaced by dogs belonging to other lineages in the last 2,000 years in present-day China, especially North China.

1999 ◽  
Vol 12 (1) ◽  
pp. 115-131 ◽  
Author(s):  
Arthur N. Samel ◽  
Wei-Chyung Wang ◽  
Xin-Zhong Liang

Abstract Yearly variations in the observed initial and final dates of heavy, persistent monsoon rainband precipitation across China are quantified. The development of a semiobjective analysis that identifies these values also makes it possible to calculate annual rainband duration and total rainfall. Relationships between total rainband precipitation and the Eurasian circulation are then determined. This research is designed such that observed rainband characteristics can be used in future investigations to evaluate GCM simulations. Normalized daily precipitation time series are analyzed between 1951 and 1990 for 85 observation stations to develop criteria that describe general rainband characteristics throughout China. Rainfall is defined to be “heavy” if the daily value at a given location is greater than 1.5% of the annual mean total. Heavy precipitation is then shown to be “persistent” and is thus identified with the rainband when the 1.5% threshold is exceeded at least 6 times in a 25-day period. Finally, rainband initial (final) dates are defined to immediately follow (precede) a minimum period of 5 consecutive days with no measurable precipitation. A semiobjective analysis based on the above definitions and rainband climatology is then applied to the time series to determine annual initial and final dates. Analysis application produces results that closely correspond to the systematic pattern observed across China, where the rainband arrives in the south during May, advances to the Yangtze River valley in June, and then to the north in July. Rainband duration (i.e., final − initial + 1) is approximately 30–40 days while total rainfall decreases from south to north. A significant positive correlation is found between total rainfall and duration interannual variability, where increased rainband precipitation corresponds to initial (final) dates that are anomalously early (late). No clear trends are identified except over north China, where both duration and total rainfall decrease substantially after 1967. The Eurasian sea level pressure and 500-hPa height fields are then correlated with total rainfall over south China, the Yangtze River valley, and north China to identify statistically significant relationships. Results indicate that precipitation amount is influenced by the interaction of several circulation features. Total rainfall increases over south China when the surface Siberian high ridges to the south and is overrun by warm moist air aloft. Yangtze River valley precipitation intensifies when westward expansion of the subtropical high along with strengthening of the Siberian high and monsoon low cause moisture advection, upward motion, and the thermal gradient along the Mei-Yu front to increase. North China total rainfall increases in response to intense heating over the landmass, westward ridging of the subtropical high, and greater moisture transport over the region.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ruonan Zhang ◽  
QuCheng Chu ◽  
Zhiyan Zuo ◽  
Yanjun Qi

Based on the Lagrangian particle dispersion model, HYSPLIT 4.9, this study analyzed the summertime atmospheric moisture sources and transportation pathways affecting six subregions across China. The sources were: Midlatitude Westerly (MLW), Siberian-Arctic regions (SibArc), Okhotsk Sea (OKS), Indian Ocean (IO), South China Sea (SCS), Pacific Ocean (PO), and China Mainland (CN). Furthermore, the relative contributions of these seven moisture sources to summertime precipitation in China were quantitatively assessed. Results showed that the CN precipitation source dominates the interannual and interdecadal variation of precipitation in most subregions, except Southwest and South China. The Northeast China vortex and Pacific–Japan (PJ) teleconnection, which transport water vapor from the MLW, OKS and PO sources, are crucial atmospheric systems and patterns for the variation of precipitation in Northeast China. The interannual variation of precipitation in Northwest and North China is mainly dominated by mid–high-latitude Eurasian wave trains, which provide the necessary dynamical conditions and associated moisture transport from the MLW and SibArc sources. In addition, an enhanced western North Pacific subtropical high (WNPSH) accompanied by the East Asian–western North Pacific summer monsoon and PJ teleconnection, transports extra moisture to North China from the SCS and PO sources, as well to the Yangtze River Valley and South China. The Indian summer monsoon (ISM) is also critically important for the interdecadal change in precipitation over the Yangtze River Valley and South China, via the southwesterly branch of moisture transport from the IO source. The interdecadal changes in precipitation over Southwest China are determined by the IO and SCS sources, via enhanced WNPSH coupling with a weakened ISM. These results suggest that the interdecadal and interannual variations of moisture sources contribute to the attendant variation of summertime precipitation in China via large-scale circulation regimes in both the mid–high and lower latitudes.


Author(s):  
Bin Zheng ◽  
Yanyan Huang ◽  
Ailan Lin

AbstractIn the present study, the moist static energy (MSE) budget associated with a persistent rainfall event that occurred over South China in late August 2018 (PR1808) was analyzed using ERA-Interim reanalysis data. The results revealed that the PR1808 event was closely related to a 12–30-day intraseasonal oscillation (ISO), with a significant westward-propagating mode. The recharge of MSE occurred before ISO deep convection, and the MSE was discharged during and after the peak precipitation. This result indicates that the recharge-discharge cycle of MSE played an important role in regulating the high-frequency ISO (HF-ISO) process during the PR1808 event. However, the mid-level MSE tendency, rather than the low-level tendency, controlled the column-integrated MSE change in this case, and there was no low-level MSE tendency ahead of HF-ISO convection, which is different from previous studies, implying that shallow convection was not a key factor in this case. The recharge of MSE related to the mid-level MSE change mode was mainly attributed to zonal advection, while the forcing related to radiative heating (longwave and shortwave radiation) and heat fluxes (latent and sensible heat fluxes) contributed little to the change in MSE. Furthermore, for the zonal advection of MSE, the main contribution originated from the advection by the low-frequency zonal flow across the low-frequency MSE gradient, and interactions between high- (low-) frequency zonal flow and low- (high-) frequency MSE. In addition, the disturbances from higher latitudes enhanced the persistent rainfall in this case over South China through the southward shift of baroclinic vorticity.


Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


Author(s):  
M. T. Postek ◽  
A. E. Vladar

Fully automated or semi-automated scanning electron microscopes (SEM) are now commonly used in semiconductor production and other forms of manufacturing. The industry requires that an automated instrument must be routinely capable of 5 nm resolution (or better) at 1.0 kV accelerating voltage for the measurement of nominal 0.25-0.35 micrometer semiconductor critical dimensions. Testing and proving that the instrument is performing at this level on a day-by-day basis is an industry need and concern which has been the object of a study at NIST and the fundamentals and results are discussed in this paper.In scanning electron microscopy, two of the most important instrument parameters are the size and shape of the primary electron beam and any image taken in a scanning electron microscope is the result of the sample and electron probe interaction. The low frequency changes in the video signal, collected from the sample, contains information about the larger features and the high frequency changes carry information of finer details. The sharper the image, the larger the number of high frequency components making up that image. Fast Fourier Transform (FFT) analysis of an SEM image can be employed to provide qualitiative and ultimately quantitative information regarding the SEM image quality.


1992 ◽  
Vol 1 (4) ◽  
pp. 52-55 ◽  
Author(s):  
Gail L. MacLean ◽  
Andrew Stuart ◽  
Robert Stenstrom

Differences in real ear sound pressure levels (SPLs) with three portable stereo system (PSS) earphones (supraaural [Sony Model MDR-44], semiaural [Sony Model MDR-A15L], and insert [Sony Model MDR-E225]) were investigated. Twelve adult men served as subjects. Frequency response, high frequency average (HFA) output, peak output, peak output frequency, and overall RMS output for each PSS earphone were obtained with a probe tube microphone system (Fonix 6500 Hearing Aid Test System). Results indicated a significant difference in mean RMS outputs with nonsignificant differences in mean HFA outputs, peak outputs, and peak output frequencies among PSS earphones. Differences in mean overall RMS outputs were attributed to differences in low-frequency effects that were observed among the frequency responses of the three PSS earphones. It is suggested that one cannot assume equivalent real ear SPLs, with equivalent inputs, among different styles of PSS earphones.


1971 ◽  
Vol 36 (4) ◽  
pp. 527-537 ◽  
Author(s):  
Norman P. Erber

Two types of special hearing aid have been developed recently to improve the reception of speech by profoundly deaf children. In a different way, each special system provides greater low-frequency acoustic stimulation to deaf ears than does a conventional hearing aid. One of the devices extends the low-frequency limit of amplification; the other shifts high-frequency energy to a lower frequency range. In general, previous evaluations of these special hearing aids have obtained inconsistent or inconclusive results. This paper reviews most of the published research on the use of special hearing aids by deaf children, summarizes several unpublished studies, and suggests a set of guidelines for future evaluations of special and conventional amplification systems.


2016 ◽  
Vol 17 (1) ◽  
pp. 66
Author(s):  
Maria Lina Silva Leite
Keyword(s):  

O objetivo deste estudo foi avaliar os efeitos do Método Pilates sobre a variabilidade da frequência cardíaca, na flexibilidade e nas variáveis antropométricas em indivíduos sedentários. O presente estudo contou com 14 voluntárias do sexo feminino, na faixa etária entre 40 e 55 anos, que realizaram 20 sessões de exercícios do Método Pilates, duas vezes por semana, com duração de 45 minutos cada sessão, dividida em três fases: repouso, exercício e recuperação. As variáveis estudadas foram: os dados antropométricos, flexibilidade avaliada utilizando o teste de sentar-e-alcançar com o Banco de Wells, e intervalos R-R usando um cardiotacômetro. O processamento dos sinais da frequência cardíaca foi efetuado em ambiente MatLab 6.1®, utilizando a TWC. Os dados coletados foram submetidos ao teste de normalidade de Shapiro Wilk e foi utilizado o teste de Wilcoxon e Anova One Way (α = 0,05). Nos resultados, observou-se que não houve diferenças significativas entre os valores antropométricos e de frequência cardíaca, porém houve aumento da flexibilidade com o treinamento. Comparando a primeira e a vigésima sessão com relação aos parâmetros low frequency (LF), high frequency (HF), e relação LF/HF, não houve diferença na fase de repouso e foram constatadas diferenças significativas de LF (p = 0,04) e HF (p = 0,04) na fase de exercício e diferença significativa de LF/HF (p = 0,05) na fase de recuperação. Comparando os parâmetros nos períodos de repouso, exercícios e recuperação durante a primeira sessão e durante a vigésima sessão, não houve diferença significativa nos parâmetros LF, HF e LF/HF. Pode-se concluir que, em relação à flexibilidade, foi observada uma melhora significativa, enquanto a análise da frequência cardíaca caracterizou a intensidade do exercício de 50% da capacidade funcional das voluntárias. Em relação aos parâmetros LF, HF e LF/HF foram observados um aumento da variabilidade da frequência cardíaca, provavelmente produto da atividade do Método Pilates. A Transformada Wavelet (TWC) mostrou-se um Método adequado para as análises da variabilidade da frequência cardíaca.Palavras-chave: frequência cardíaca, Transformada Wavelet, Pilates.


1998 ◽  
Vol 2 ◽  
pp. 115-122
Author(s):  
Donatas Švitra ◽  
Jolanta Janutėnienė

In the practice of processing of metals by cutting it is necessary to overcome the vibration of the cutting tool, the processed detail and units of the machine tool. These vibrations in many cases are an obstacle to increase the productivity and quality of treatment of details on metal-cutting machine tools. Vibration at cutting of metals is a very diverse phenomenon due to both it’s nature and the form of oscillatory motion. The most general classification of vibrations at cutting is a division them into forced vibration and autovibrations. The most difficult to remove and poorly investigated are the autovibrations, i.e. vibrations arising at the absence of external periodic forces. The autovibrations, stipulated by the process of cutting on metalcutting machine are of two types: the low-frequency autovibrations and high-frequency autovibrations. When the low-frequency autovibration there appear, the cutting process ought to be terminated and the cause of the vibrations eliminated. Otherwise, there is a danger of a break of both machine and tool. In the case of high-frequency vibration the machine operates apparently quiently, but the processed surface feature small-sized roughness. The frequency of autovibrations can reach 5000 Hz and more.


Sign in / Sign up

Export Citation Format

Share Document