scholarly journals The yeast RNA polymerase I promoter: ribosomal DNA sequences involved in transcription initiation and complex formation inin vitro

1991 ◽  
Vol 19 (19) ◽  
pp. 5363-5370 ◽  
Author(s):  
Tanja Kulkens ◽  
Daniel L. Riggs ◽  
J.Danis Heck ◽  
Rudi J. Planta ◽  
Masayasu Nomura
1988 ◽  
Vol 8 (5) ◽  
pp. 1940-1946
Author(s):  
E Bateman ◽  
M R Paule

Chemical footprinting and topological analysis were carried out on the Acanthamoeba castellanii rRNA transcription initiation factor (TIF) and RNA polymerase I complexes with DNA during transcription initiation and elongation. The results show that the binding of TIF and polymerase to the promoter does not alter the supercoiling of the DNA template and the template does not become sensitive to modification by diethylpyrocarbonate, which can identify melted DNA regions. Thus, in contrast to bacterial RNA polymerase, the eucaryotic RNA polymerase I-promoter complex is in a closed configuration preceding addition of nucleotides in vitro. Initiation and 3'-O-methyl CTP-limited translocation by RNA polymerase I results in separation of the polymerase-TIF footprints, leaving the TIF footprint unaltered. In contrast, initiation and translocation result in a significant change in the conformation of the polymerase-DNA complex, culminating in an unwound DNA region of at least 10 base pairs.


Author(s):  
Randall Dass ◽  
Aishe Sarshad ◽  
Brittany Carson ◽  
Jennifer Feenstra ◽  
Amanpreet Kaur ◽  
...  

2001 ◽  
Vol 21 (7) ◽  
pp. 2292-2297 ◽  
Author(s):  
Imran Siddiqi ◽  
John Keener ◽  
Loan Vu ◽  
Masayasu Nomura

ABSTRACT Initiation of ribosomal DNA (rDNA) transcription by RNA polymerase I (Pol I) in the yeast Saccharomyces cerevisiae involves upstream activation factor (UAF), core factor, the TATA binding protein (TBP), and Rrn3p in addition to Pol I. We found previously that yeast strains carrying deletions in the UAF component RRN9switch completely to the use of Pol II for rRNA transcription, with no residual Pol I transcription. These polymerase-switched strains initially grow very slowly, but subsequent expansion in the number of rDNA repeats on chromosome XII leads to better growth. Recently, it was reported that TBP overexpression could bypass the requirement of UAF for Pol I transcription in vivo, producing nearly wild-type levels of growth in UAF mutant strains (P. Aprikian, B. Moorefield, and R. H. Reeder, Mol. Cell. Biol. 20:5269–5275, 2000). Here, we demonstrate that deletions in the UAF component RRN5,RRN9, or RRN10 lead to Pol II transcription of rDNA. TBP overexpression does not suppress UAF mutation, and these strains continue to use Pol II for rRNA transcription. We do not find evidence for even low levels of Pol I transcription in UAF mutant strains carrying overexpressed TBP. In diploid strains lacking both copies of the UAF componentRRN9, Pol II transcription of rDNA is more strongly repressed than in haploid strains but TBP overexpression still fails to activate Pol I. These results emphasize that UAF plays an essential role in activation of Pol I transcription and silencing of Pol II transcription of rDNA and that TBP functions to recruit the Pol I machinery in a manner completely dependent on UAF.


1987 ◽  
Vol 7 (4) ◽  
pp. 1486-1495 ◽  
Author(s):  
M Nagamine ◽  
T Kishimoto ◽  
J Aono ◽  
H Kato ◽  
R Kominami ◽  
...  

We compared the ability of various deletion and substitution mutants of the mouse rRNA gene promoter to bind essential factors required for accurate transcription initiation by RNA polymerase I. Different amounts of a competitor template were first incubated with a mouse cell extract containing the whole complement of factors and RNA polymerase I, and then a tester template was added for the second incubation. Transcription was started by adding nucleoside triphosphates (one labeled), and the accurate transcripts were determined on a gel. The results indicated that the ability of 5' deletion mutants to sequester essential factors decreased almost concurrently with the impairment of in vitro transcription activity, whereas when the promoter sequence was removed from the 3' side, the transcription activity decreased earlier and more drastically than the sequestration ability. Similar, though not identical, results were obtained by preincubation with fraction D separated on a phosphocellulose column, indicating that the major factor which was sequestered was TFID, the species-dependent transcription initiation factor that binds first to the promoter in the initiation reaction (H. Kato, M. Nagamine, R. Kominami, and M. Muramatsu, Mol. Cell. Biol. 6:3418-3427, 1986). Compilation of the data suggests that a region inside the 5' half of the core promoter (-40 to -1) is essential for the binding of TFID. The 3' half of the promoter (-1 to downstream) is not essential for the binding of TFID but is highly important for an efficient transcription initiation. A strong down-mutant with a one-base substitution at -16 (G to A) had a reduced ability to bind to TFID, whereas a null mutant with a single base substitution at -7 (G to A) showed a binding ability similar to that of the wild-type promoter when tested with whole-cell extract. This null mutant, however, could not sequester the TFID well when incubated with fraction D alone, suggesting that the binding of TFID with this mutant is unstable in the absence of another factor(s) present in cell extract. The factor is not TFIA, which binds after TFID, because the addition of fraction A containing TFIA did not cause TFID to bind to the mutant. The availability of different mutants having lesions at different steps of transcription initiation will provide a powerful tool for the dissection of the initiation reaction of the RNA gene.


1990 ◽  
Vol 18 (7) ◽  
pp. 1677-1718 ◽  
Author(s):  
S.David Smith ◽  
Emmanuel Oriahi ◽  
Hsin-Fang Yang-Yen ◽  
WenQin Xie ◽  
Catherine Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document