pol ii
Recently Published Documents


TOTAL DOCUMENTS

1084
(FIVE YEARS 309)

H-INDEX

88
(FIVE YEARS 9)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Yongkang Yang ◽  
Haiquan Lu ◽  
Chelsey Chen ◽  
Yajing Lyu ◽  
Robert N. Cole ◽  
...  

AbstractHypoxia-inducible factor-1 (HIF-1) is a transcription factor that acts as a regulator of oxygen (O2) homeostasis in metazoan species by binding to hypoxia response elements (HREs) and activating the transcription of hundreds of genes in response to reduced O2 availability. RNA polymerase II (Pol II) initiates transcription of many HIF target genes under non-hypoxic conditions but pauses after approximately 30–60 nucleotides and requires HIF-1 binding for release. Here we report that in hypoxic breast cancer cells, HIF-1 recruits TRIM28 and DNA-dependent protein kinase (DNA-PK) to HREs to release paused Pol II. We show that HIF-1α and TRIM28 assemble the catalytically-active DNA-PK heterotrimer, which phosphorylates TRIM28 at serine-824, enabling recruitment of CDK9, which phosphorylates serine-2 of the Pol II large subunit C-terminal domain as well as the negative elongation factor to release paused Pol II, thereby stimulating productive transcriptional elongation. Our studies reveal a molecular mechanism by which HIF-1 stimulates gene transcription and reveal that the anticancer effects of drugs targeting DNA-PK in breast cancer may be due in part to their inhibition of HIF-dependent transcription.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 279
Author(s):  
Zhi-Liang Zheng

Cell cycle control is vital for cell proliferation in all eukaryotic organisms. The entire cell cycle can be conceptually separated into four distinct phases, Gap 1 (G1), DNA synthesis (S), G2, and mitosis (M), which progress sequentially. The precise control of transcription, in particular, at the G1 to S and G2 to M transitions, is crucial for the synthesis of many phase-specific proteins, to ensure orderly progression throughout the cell cycle. This mini-review highlights highly conserved transcriptional regulators that are shared in budding yeast (Saccharomyces cerevisiae), Arabidopsis thaliana model plant, and humans, which have been separated for more than a billion years of evolution. These include structurally and/or functionally conserved regulators cyclin-dependent kinases (CDKs), RNA polymerase II C-terminal domain (CTD) phosphatases, and the classical versus shortcut models of Pol II transcriptional control. A few of CDKs and CTD phosphatases counteract to control the Pol II CTD Ser phosphorylation codes and are considered critical regulators of Pol II transcriptional process from initiation to elongation and termination. The functions of plant-unique CDKs and CTD phosphatases in relation to cell division are also briefly summarized. Future studies towards testing a cooperative transcriptional mechanism, which is proposed here and involves sequence-specific transcription factors and the shortcut model of Pol II CTD code modulation, across the three eukaryotic kingdoms will reveal how individual organisms achieve the most productive, large-scale transcription of phase-specific genes required for orderly progression throughout the entire cell cycle.


2022 ◽  
Vol 119 (3) ◽  
pp. e2114065119
Author(s):  
Juntaek Oh ◽  
Tiezheng Jia ◽  
Jun Xu ◽  
Jenny Chong ◽  
Peter B. Dervan ◽  
...  

Elongating RNA polymerase II (Pol II) can be paused or arrested by a variety of obstacles. These obstacles include DNA lesions, DNA-binding proteins, and small molecules. Hairpin pyrrole-imidazole (Py-Im) polyamides bind to the minor groove of DNA in a sequence-specific manner and induce strong transcriptional arrest. Remarkably, this Py-Im–induced Pol II transcriptional arrest is persistent and cannot be rescued by transcription factor TFIIS. In contrast, TFIIS can effectively rescue the transcriptional arrest induced by a nucleosome barrier. The structural basis of Py-Im–induced transcriptional arrest and why TFIIS cannot rescue this arrest remain elusive. Here we determined the X-ray crystal structures of four distinct Pol II elongation complexes (Pol II ECs) in complex with hairpin Py-Im polyamides as well as of the hairpin Py-Im polyamides–dsDNA complex. We observed that the Py-Im oligomer directly interacts with RNA Pol II residues, introduces compression of the downstream DNA duplex, prevents Pol II forward translocation, and induces Pol II backtracking. These results, together with biochemical studies, provide structural insight into the molecular mechanism by which Py-Im blocks transcription. Our structural study reveals why TFIIS fails to promote Pol II bypass of Py-Im–induced transcriptional arrest.


2022 ◽  
Author(s):  
Shaunak Kar ◽  
Yogendra Bordiya ◽  
Nestor Rodriguez ◽  
Junghyun Kim ◽  
Elizabeth C Gardner ◽  
...  

Abstract Background: The construction and application of synthetic genetic circuits is frequently improved if gene expression can be orthogonally controlled, relative to the host. In plants, orthogonality can be achieved via the use of CRISPR-based transcription factors that are programmed to act on natural or synthetic promoters. The construction of complex gene circuits can require multiple, orthogonal regulatory interactions, and this in turn requires that the full programmability of CRISPR elements be adapted to non-natural and non-standard promoters that have few constraints on their design. Therefore, we have developed synthetic promoter elements in which regions upstream of the minimal 35S CaMV promoter are designed from scratch to interact via programmed gRNAs with dCas9 fusions that allow activation of gene expression. Results: A panel of three, mutually orthogonal promoters that can be acted on by artificial gRNAs bound by CRISPR regulators were designed. Guide RNA expression targeting these promoters was in turn controlled by either Pol III (U6) or ethylene-inducible Pol II promoters, implementing for the first time a fully artificial Orthogonal Control System (OCS). Following demonstration of the complete orthogonality of the designs, the OCS was tied to cellular metabolism by putting gRNA expression under the control of an endogenous plant signaling molecule, ethylene. The ability to form complex circuitry was demonstrated via the ethylene-driven, ratiometric expression of fluorescent proteins in single plants. Conclusions: The design of synthetic promoters is highly generalizable to large tracts of sequence space, allowing Orthogonal Control Systems of increasing complexity to potentially be generated at will. The ability to tie in several different basal features of plant molecular biology (Pol II and Pol III promoters, ethylene regulation) to the OCS demonstrates multiple opportunities for engineering at the system level. Moreover, given the fungibility of the core 35S CaMV promoter elements, the derived synthetic promoters can potentially be utilized across a variety of plant species.


Theranostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 186-206
Author(s):  
Hyun-Soo Kim ◽  
Yoon Jeon ◽  
Yoon Ok Jang ◽  
Ho Lee ◽  
Yong Shin ◽  
...  

Open Biology ◽  
2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Abderhman Abuhashem ◽  
Vidur Garg ◽  
Anna-Katerina Hadjantonakis

The coordinated regulation of transcriptional networks underpins cellular identity and developmental progression. RNA polymerase II promoter-proximal pausing (Pol II pausing) is a prevalent mechanism by which cells can control and synchronize transcription. Pol II pausing regulates the productive elongation step of transcription at key genes downstream of a variety of signalling pathways, such as FGF and Nodal. Recent advances in our understanding of the Pol II pausing machinery and its role in transcription call for an assessment of these findings within the context of development. In this review, we discuss our current understanding of the molecular basis of Pol II pausing and its function during organismal development. By critically assessing the tools used to study this process we conclude that combining recently developed genomics approaches with refined perturbation systems has the potential to expand our understanding of Pol II pausing mechanistically and functionally in the context of development and beyond.


2021 ◽  
Author(s):  
Susannah Stephenson-Tsoris ◽  
John L. Casey

Hepatitis delta virus (HDV) is a significant human pathogen that causes acute and chronic liver disease; there is no licensed therapy. HDV is a circular negative-sense ssRNA virus that produces three RNAs in infected cells: genome, antigenome and mRNA; the latter encodes hepatitis delta antigen, the viral protein. These RNAs are synthesized by host DNA-dependent RNA polymerase acting as an RNA-dependent RNA polymerase. Although HDV genome RNA accumulates to high levels in infected cells, the mechanism by which this process occurs remains poorly understood. For example, the nature of the 5’ end of the genome, including the synthesis start site and its chemical composition, are not known. Analysis of this process has been challenging because the initiation site is part of an unstable precursor in the rolling circle mechanism by which HDV genome RNA is synthesized. In this study, circular HDV antigenome RNAs synthesized in vitro were used to directly initiate HDV genome RNA synthesis in transfected cells, thus enabling detection of the 5’ end of the genome RNA. The 5’ end of this RNA is capped, as expected for a Pol II product. Initiation begins at position 1646 on the genome, which is located near the loop end proximal to the start site for HDAg mRNA synthesis. Unexpectedly, synthesis begins with a guanosine that is not conventionally templated by the HDV RNA. IMPORTANCE Hepatitis delta virus (HDV) is a unique virus that causes severe liver disease. It uses host RNA Polymerase II to copy its circular RNA genome in a unique and poorly understood process. Although the virus RNA accumulates to high levels within infected cells, it is not known how synthesis of the viral RNA begins, nor even where on the genome synthesis starts. Here, we identify the start site for the initiation of HDV genome RNA synthesis as position 1646, which is at one end of the closed hairpin-like structure of the viral RNA. The 5’ end of the RNA is capped, as expected for Pol II products. However, RNA synthesis begins with a guanosine that is not present in the genome. Thus, although HDV uses Pol II to synthesize the viral genome, some details of the initiation process are different. These differences could be important for successfully targeting virus replication.


2021 ◽  
Author(s):  
Hamideh Hajiabadi ◽  
Irina Mamontova ◽  
Roshan Prizak ◽  
Agnieszka Pancholi ◽  
Anne Koziolek ◽  
...  

AbstractFluorescence microscopy, a central tool of biological research, is subject to inherent trade-offs in experiment design. For instance, image acquisition speed can only be increased in exchange for a lowered signal quality, or for an increased rate of photo-damage to the specimen. Computational denoising can recover some loss of signal, extending the trade-off margin for high-speed imaging. Recently proposed denoising on the basis of neural networks shows exceptional performance but raises concerns of errors typical of neural networks. Here, we present a work-flow that supports an empirically optimized reduction of exposure times, as well as per-image quality control to exclude images with reconstruction errors. We implement this work-flow on the basis of the denoising tool Noise2Void and assess the molecular state and three-dimensional shape of RNA Polymerase II (Pol II) clusters in live zebrafish embryos. Image acquisition speed could be tripled, achieving 2-second time resolution and 350-nanometer lateral image resolution. The obtained data reveal stereotyped events of approximately 10 seconds duration: initially, the molecular mark for initiated Pol II increases, then the mark for active Pol II increases, and finally Pol II clusters take on a stretched and unfolded shape. An independent analysis based on fixed sample images reproduces this sequence of events, and suggests that they are related to the transient association of genes with Pol II clusters. Our work-flow consists of procedures that can be implemented on commercial fluorescence microscopes without any hardware or software modification, and should therefore be transferable to many other applications.


Leukemia ◽  
2021 ◽  
Author(s):  
Mengke Li ◽  
Chen Qiu ◽  
Yujie Bian ◽  
Deyang Shi ◽  
Bichen Wang ◽  
...  

AbstractSETD5 mutations were identified as the genetic causes of neurodevelopmental disorders. While the whole-body knockout of Setd5 in mice leads to embryonic lethality, the role of SETD5 in adult stem cell remains unexplored. Here, a critical role of Setd5 in hematopoietic stem cells (HSCs) is identified. Specific deletion of Setd5 in hematopoietic system significantly increased the number of immunophenotypic HSCs by promoting HSC proliferation. Setd5-deficient HSCs exhibited impaired long-term self-renewal capacity and multiple-lineage differentiation potentials under transplantation pressure. Transcriptome analysis of Setd5-deficient HSCs revealed a disruption of quiescence state of long-term HSCs, a cause of the exhaustion of functional HSCs. Mechanistically, SETD5 was shown to regulate HSC quiescence by mediating the release of promoter-proximal paused RNA polymerase II (Pol II) on E2F targets in cooperation with HCF-1 and PAF1 complex. Taken together, these findings reveal an essential role of SETD5 in regulating Pol II pausing-mediated maintenance of adult stem cells.


2021 ◽  
Author(s):  
Hai Zheng ◽  
Qianwei Jin ◽  
Yilun Qi ◽  
Weida Liu ◽  
Yulei Ren ◽  
...  

For the majority of expressed eukaryotic genes, RNA polymerase II (Pol II) forms a paused elongation complex (PEC) and undergoes promoter-proximal pausing downstream of the transcription start site. The polymerase either proceeds into productive elongation or undergoes promoter-proximal premature transcription termination. It remains incompletely understood how transcription is regulated at this stage. Here, we determined the structure of PEC bound to INTAC, an Integrator-containing PP2A complex, at near-atomic resolution. The structure shows that INTAC partially wraps around PEC through multiple contacts, permitting the memetic nascent RNA to run into substrate-entry tunnel of the endonuclease subunit INTS11 of INTAC for cleavage. Pol II C-terminal domain (CTD) winds over INTAC backbone module through multiple anchors and is suspended above the phosphatase of INTAC for dephosphorylation. Biochemical analysis shows that INTAC-PEC association requires unphosphorylated CTD and could tolerate CTD phosphorylation, suggesting an INTAC-mediated persistent CTD dephosphorylation followed by reinforcement of the INTAC-PEC complex. Our study reveals how INTAC binds PEC and orchestrates RNA cleavage and CTD dephosphorylation, two critical events in generating premature transcription termination.


Sign in / Sign up

Export Citation Format

Share Document