scholarly journals Blood-brain barrier alterations in human brain tumors revealed by genome-wide transcriptomic profiling

2021 ◽  
Author(s):  
Johanna Schaffenrath ◽  
Tania Wyss ◽  
Liqun He ◽  
Elisabeth Jane Rushing ◽  
Mauro Delorenzi ◽  
...  

Abstract Background Brain tumors, whether primary or secondary, have limited therapeutic options despite advances in understanding driver gene mutations and heterogeneity within tumor cells. The cellular and molecular composition of brain tumor stroma, an important modifier of tumor growth, has been less investigated to date. Only few studies have focused on the vasculature of human brain tumors despite the fact that the blood-brain barrier (BBB) represents the major obstacle for efficient drug delivery. Methods In this study, we employed RNA sequencing to characterize transcriptional alterations of endothelial cells isolated from primary and secondary human brain tumors. We used an immunoprecipitation approach to enrich for endothelial cells from normal brain, glioblastoma (GBM) and lung cancer brain metastasis (BM). Results Analysis of the endothelial transcriptome showed deregulation of genes implicated in cell proliferation, angiogenesis and deposition of extracellular matrix (ECM) in the vasculature of GBM and BM. Deregulation of genes defining the BBB dysfunction module were found in both tumor types. We identified deregulated expression of genes in vessel-associated fibroblasts in GBM. Conclusion We characterize alterations in BBB genes in GBM and BM vasculature and identify proteins that might be exploited for developing drug delivery platforms. In addition, our analysis on vessel-associated fibroblasts in GBM shows that the cellular composition of brain tumor stroma merits further investigation.

1983 ◽  
Vol 8 (Supplement) ◽  
pp. P39
Author(s):  
Randall A. Hawkins ◽  
Peter D. Grimm ◽  
Joseph A. Wapenski ◽  
Sung-Cheng Huang ◽  
Peter Greenberg ◽  
...  

2012 ◽  
Vol 32 (1) ◽  
pp. E4 ◽  
Author(s):  
Hao-Li Liu ◽  
Hung-Wei Yang ◽  
Mu-Yi Hua ◽  
Kuo-Chen Wei

Malignant glioma is a severe primary CNS cancer with a high recurrence and mortality rate. The current strategy of surgical debulking combined with radiation therapy or chemotherapy does not provide good prognosis, tumor progression control, or improved patient survival. The blood-brain barrier (BBB) acts as a major obstacle to chemotherapeutic treatment of brain tumors by severely restricting drug delivery into the brain. Because of their high toxicity, chemotherapeutic drugs cannot be administered at sufficient concentrations by conventional delivery methods to significantly improve long-term survival of patients with brain tumors. Temporal disruption of the BBB by microbubble-enhanced focused ultrasound (FUS) exposure can increase CNS-blood permeability, providing a promising new direction to increase the concentration of therapeutic agents in the brain tumor and improve disease control. Under the guidance and monitoring of MR imaging, a brain drug-delivery platform can be developed to control and monitor therapeutic agent distribution and kinetics. The success of FUS BBB disruption in delivering a variety of therapeutic molecules into brain tumors has recently been demonstrated in an animal model. In this paper the authors review a number of critical studies that have demonstrated successful outcomes, including enhancement of the delivery of traditional clinically used chemotherapeutic agents or application of novel nanocarrier designs for actively transporting drugs or extending drug half-lives to significantly improve treatment efficacy in preclinical animal models.


1990 ◽  
Vol 28 (6) ◽  
pp. 758-765 ◽  
Author(s):  
Christopher Guerin ◽  
John Laterra ◽  
Ralph H. Hruban ◽  
Henry Brem ◽  
Lester R. Drewes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document