barrier permeability
Recently Published Documents


TOTAL DOCUMENTS

1435
(FIVE YEARS 244)

H-INDEX

83
(FIVE YEARS 9)

2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Julia Baumann ◽  
Chih-Chieh Tsao ◽  
Shalmali Patkar ◽  
Sheng-Fu Huang ◽  
Simona Francia ◽  
...  

Abstract Background Ways to prevent disease-induced vascular modifications that accelerate brain damage remain largely elusive. Improved understanding of perivascular cell signalling could provide unparalleled insight as these cells impact vascular stability and functionality of the neurovascular unit as a whole. Identifying key drivers of astrocyte and pericyte responses that modify cell–cell interactions and crosstalk during injury is key. At the cellular level, injury-induced outcomes are closely entwined with activation of the hypoxia-inducible factor-1 (HIF-1) pathway. Studies clearly suggest that endothelial HIF-1 signalling increases blood–brain barrier permeability but the influence of perivascular HIF-1 induction on outcome is unknown. Using novel mouse lines with astrocyte and pericyte targeted HIF-1 loss of function, we herein show that vascular stability in vivo is differentially impacted by perivascular hypoxia-induced HIF-1 stabilization. Methods To facilitate HIF-1 deletion in adult mice without developmental complications, novel Cre-inducible astrocyte-targeted (GFAP-CreERT2; HIF-1αfl/fl and GLAST-CreERT2; HIF-1αfl/fl) and pericyte-targeted (SMMHC-CreERT2; HIF-1αfl/fl) transgenic animals were generated. Mice in their home cages were exposed to either normoxia (21% O2) or hypoxia (8% O2) for 96 h in an oxygen-controlled humidified glove box. All lines were similarly responsive to hypoxic challenge and post-Cre activation showed significantly reduced HIF-1 target gene levels in the individual cells as predicted. Results Unexpectedly, hypoxia-induced vascular remodelling was unaffected by HIF-1 loss of function in the two astrocyte lines but effectively blocked in the pericyte line. In correlation, hypoxia-induced barrier permeability and water accumulation were abrogated only in pericyte targeted HIF-1 loss of function mice. In contrast to expectation, brain and serum levels of hypoxia-induced VEGF, TGF-β and MMPs (genes known to mediate vascular remodelling) were unaffected by HIF-1 deletion in all lines. However, in agreement with the permeability data, immunofluorescence and electron microscopy showed clear prevention of hypoxia-induced tight junction disruption in the pericyte loss of function line. Conclusion This study shows that pericyte but not astrocyte HIF-1 stabilization modulates endothelial tight junction functionality and thereby plays a pivotal role in hypoxia-induced vascular dysfunction. Whether the cells respond similarly or differentially to other injury stimuli will be of significant relevance.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262152
Author(s):  
Rania Harati ◽  
Saba Hammad ◽  
Abdelaziz Tlili ◽  
Mona Mahfood ◽  
Aloïse Mabondzo ◽  
...  

Background The brain endothelial barrier permeability is governed by tight and adherens junction protein complexes that restrict paracellular permeability at the blood-brain barrier (BBB). Dysfunction of the inter-endothelial junctions has been implicated in neurological disorders such as multiple sclerosis, stroke and Alzheimer’s disease. The molecular mechanisms underlying junctional dysfunction during BBB impairment remain elusive. MicroRNAs (miRNAs) have emerged as versatile regulators of the BBB function under physiological and pathological conditions, and altered levels of BBB-associated microRNAs were demonstrated in a number of brain pathologies including neurodegeneration and neuroinflammatory diseases. Among the altered micro-RNAs, miR-27a-3p was found to be downregulated in a number of neurological diseases characterized by loss of inter-endothelial junctions and disruption of the barrier integrity. However, the relationship between miR-27a-3p and tight and adherens junctions at the brain endothelium remains unexplored. Whether miR-27a-3p is involved in regulation of the junctions at the brain endothelium remains to be determined. Methods Using a gain-and-loss of function approach, we modulated levels of miR-27a-3p in an in-vitro model of the brain endothelium, key component of the BBB, and examined the resultant effect on the barrier paracellular permeability and on the expression of essential tight and adherens junctions. The mechanisms governing the regulation of junctional proteins by miR-27a-3p were also explored. Results Our results showed that miR-27a-3p inhibitor increases the barrier permeability and causes reduction of claudin-5 and occludin, two proteins highly enriched at the tight junction, while miR-27a-3p mimic reduced the paracellular leakage and increased claudin-5 and occludin protein levels. Interestingly, we found that miR-27-3p induces expression of claudin-5 and occludin by downregulating Glycogen Synthase Kinase 3 beta (GSK3ß) and activating Wnt/ß-catenin signaling, a key pathway required for the BBB maintenance. Conclusion For the first time, we showed that miR-27a-3p is a positive regulator of key tight junction proteins, claudin-5 and occludin, at the brain endothelium through targeting GSK3ß gene and activating Wnt/ß-catenin signaling. Thus, miR-27a-3p may constitute a novel therapeutic target that could be exploited to prevent BBB dysfunction and preserves its integrity in neurological disorders characterized by impairment of the barrier’s function.


Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 154
Author(s):  
Shofiul Azam ◽  
Ju-Young Park ◽  
In-Su Kim ◽  
Dong-Kug Choi

Piperine (PIP) is an active alkaloid of black and long peppers. An increasing amount of evidence is suggesting that PIP and its metabolite’s could be a potential therapeutic to intervene different disease conditions including chronic inflammation, cardiac and hepatic diseases, neurodegenerative diseases, and cancer. In addition, the omnipresence of PIP in food and beverages made this compound an important investigational material. It has now become essential to understand PIP pharmacology and toxicology to determine its merits and demerits, especially its effect on the central nervous system (CNS). Although several earlier reports documented that PIP has poor pharmacokinetic properties, such as absorption, bioavailability, and blood–brain barrier permeability. However, its interaction with metabolic enzyme cytochrome P450 superfamily and competitive hydrophobic interaction at Monoamine oxide B (MAO-B) active site have made PIP both a xenobiotics bioenhancer and a potential MAO-B inhibitor. Moreover, recent advancements in pharmaceutical technology have overcome several of PIP’s limitations, including bioavailability and blood–brain barrier permeability, even at low doses. Contrarily, the structure activity relationship (SAR) study of PIP suggesting that its several metabolites are reactive and plausibly responsible for acute toxicity or have pharmacological potentiality. Considering the importance of PIP and its metabolites as an emerging drug target, this study aims to combine the current knowledge of PIP pharmacology and biochemistry with neurodegenerative and neurological disease therapy.


2021 ◽  
pp. 34-37
Author(s):  
I. N. Ekimov ◽  
O. V. Pravdina

Disorders of interstitial barrier permeability as one of the promising mechanisms of psoriasis formation and development is a trend of the last decades. In the analysis of modern works devoted to the evaluation of the role of intestinal barrier damage in the development of psoriasis, several ways of assessing intestinal permeability have been noted (including measurement of transepithelial electrical responses using a Ussing chamber, measurement of excretion of orally injected molecules, determination of dynamics and kinetics of LPS intestinal bacteria, immunohistochemical confocal analysis of uniform Z-sections perpendicular to the epithelial cell surface, etc.). However, most authors emphasize the diagnostic significance and availability of biomarker detection. Among the described biomarkers, claudin-3, fecal zonulin, α1-antitrypsin, calprotectin and intestinal fatty acid binding protein (I-FABP) are the most valuable. Through these methods of assessing intestinal permeability and the results of their studies, a number of authors practically prove the correlation between the violation of the intestinal microbiota, intestinal barrier permeability and the development of psoriasis, as well as its severity. This aspect is promising to the therapy of patients with psoriasis, which includes correction of intestinal microbiota and intestinal wall permeability.


Author(s):  
Yingxue Liu ◽  
Xuji Zhou ◽  
Yiting Wu ◽  
Xiaomeng Yang ◽  
Yanting Wang ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1851
Author(s):  
Hannah L. McRae ◽  
Michelle Warren Millar ◽  
Spencer A. Slavin ◽  
Neil Blumberg ◽  
Arshad Rahman ◽  
...  

ABO immune complexes (ABO-IC) formed by ABO-incompatible antigen-antibody interaction are associated with hemolysis and platelet destruction in patients transfused with ABO-nonidentical blood products. However, the effects of ABO-IC on endothelial cells (EC) are unclear. ABO-IC were formed in vitro from normal donor-derived plasma and serum. Human pulmonary artery EC (HPAEC) were cultured and treated with media, ABO-identical and –non-identical plasma, and ABO-IC. EC barrier integrity was evaluated using transendothelial electrical resistance (TEER), scanning electron microscopy (SEM), vascular endothelial (VE)-cadherin and phalloidin staining, and Rho-associated Kinase (ROCK) inhibitor treatment. TEER revealed significant/irreversible barrier disruption within 1–2 h of exposure to ABO non-identical plasma and ABO-IC; this occurred independently of EC ABO type. Treatment with ABO-IC resulted in decreased VE-cadherin staining and increased phalloidin staining in a time-dependent manner, suggesting that the resultant increased EC barrier permeability is secondary to actin stress fiber formation and loss of cell surface VE-cadherin. Inhibition of ROCK was effective in protecting against IC-induced barrier disruption even two hours after ABO-IC exposure. ABO-IC causes increased EC barrier permeability by decreasing cell surface VE-cadherin and promoting stress fiber formation, which is preventable by inhibiting ROCK activation to protect against EC contraction and gap formation.


Sign in / Sign up

Export Citation Format

Share Document