scholarly journals TMIC-16. THE IMMUNO-PROTECTIVE FUNCTION OF GLIOMA-ASSOCIATED BONE MARROW DERIVED CELLS DEPENDS ON THE STAGE OF TUMOR GROWTH AND IS INFLUENCED BY TREATMENT WITH MINOCYCLINE

2017 ◽  
Vol 19 (suppl_6) ◽  
pp. vi246-vi246
Author(s):  
Sheila Mansouri ◽  
Kelly Burrell ◽  
Mamatjan Yasin ◽  
Sameer Agnihotri ◽  
Romina Nejad ◽  
...  
2018 ◽  
Vol 215 (12) ◽  
pp. 2967-2968 ◽  
Author(s):  
Giulia Biffi ◽  
David A. Tuveson

In this issue of JEM, Raz et al. (https://doi.org/10.1084/jem.20180818) identify a subset of bone marrow–derived cells that uniquely promotes breast cancer angiogenesis and tumor growth. The existence of functional heterogeneity among stromal populations motivates further fundamental and therapeutic inquiries.


Tumor Biology ◽  
2017 ◽  
Vol 39 (2) ◽  
pp. 101042831769223 ◽  
Author(s):  
Qiaowei Zheng ◽  
Xueqian Li ◽  
Xiaoliang Cheng ◽  
Ting Cui ◽  
Yingcheng Zhuo ◽  
...  

Granulocyte-macrophage colony-stimulating factor has been widely used as an adjuvant therapy for cancer patients exhibiting myelosuppression induced by chemotherapy or radiotherapy. However, the effects of granulocyte-macrophage colony-stimulating factor on tumor growth, as well as its precise mechanism, are still controversial due to inconsistent evidence. This study investigated the effect of exogenous granulocyte-macrophage colony-stimulating factor on the growth of B16 melanoma, S180 sarcoma, and U14 cervical carcinoma in mice. The angiogenesis and recruitment of bone-marrow-derived cells were analyzed in tumor tissues. Interactions among granulocyte-macrophage colony-stimulating factor, bone-marrow-derived cells, and B16 tumor cells were investigated in vitro. Proangiogenic types of bone-marrow-derived cells in blood were assessed both in vivo and in vitro. The results showed that granulocyte-macrophage colony-stimulating factor markedly facilitated the growth of B16 and S180 tumors, but not U14 tumors. Granulocyte-macrophage colony-stimulating factor increased the densities of blood vessels and the number of bone-marrow-derived cells in B16 tumor tissues. The granulocyte-macrophage colony-stimulating factor–induced enhancement of tumor cell proliferation was mediated by bone-marrow-derived cells in vitro. Meanwhile, a distinct synergistic effect on endothelial cell function between granulocyte-macrophage colony-stimulating factor and bone-marrow-derived cells was observed. After separating two types of bone-marrow-derived cells, granulocyte-macrophage colony-stimulating factor–induced enhancement of tumor growth and angiogenesis in vivo was mediated by proangiogenic cells in granulocytes, but not monocytes, with CD11b+, vascular endothelial growth factor receptor 2, and C-X-C chemokine receptor 4 granulocytes possibly involved. These data suggest that granulocyte-macrophage colony-stimulating factor contributes to the growth and angiogenesis of certain types of tumor, and these mechanisms are probably mediated by proangiogenic cells in granulocytes. Applying granulocyte-macrophage colony-stimulating factor may attenuate the antitumor effects of chemotherapy and radiotherapy in certain types of tumor.


2010 ◽  
Vol 64 (6) ◽  
pp. 409-416 ◽  
Author(s):  
Hiroki Kamata ◽  
Kanako Hosono ◽  
Tatsunori Suzuki ◽  
Yasufumi Ogawa ◽  
Hidefumi Kubo ◽  
...  

Oncotarget ◽  
2015 ◽  
Vol 6 (32) ◽  
pp. 32575-32585 ◽  
Author(s):  
Yanke Chen ◽  
Xingchun Gou ◽  
Derek Kai Kong ◽  
Xiaofei Wang ◽  
Jianhui Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document