221 Functional Modulation of the Blood Brain Barrier

Neurosurgery ◽  
2017 ◽  
Vol 64 (CN_suppl_1) ◽  
pp. 260-260
Author(s):  
Geoffrey Stricsek ◽  
Michael J Lang ◽  
Ashwini Dayal Sharan ◽  
Robert H Rosenwasser ◽  
Lorraine Iacovitti

Abstract INTRODUCTION Delivery of therapeutic agents to the brain is constrained by the blood-brain barrier (BBB). Previous work (Yarnitsky) suggested BBB permeability was increased with stimulation of the sphenopalatine ganglion (SPG). However, their model looked at FITC-dextran signal in CSF superfusate, a reflection of epithelial tight junctions at the blood-CSF barrier, and quantified BBB permeability using Evans blue, a marker insufficient for this role (Saunders). METHODS Experiments were conducted in Sprague-Dawley rats using 70 kDa FITC-dextran as a marker to quantify BBB permeability. Once anesthetized, the right femoral vein was exposed and catheterized. Next, SPG fibers were exposed behind the right eye and an electrode was hooked around those fibers. Stimulation occurred in blocks of 90 seconds of “on” time at 5 volts and 10 Hz followed by 60 seconds of “off” time. Injection of 0.1 mL of a 100 mg/mL concentration of FITC coincided with each “on” stimulation cycle; a total of 1.0 mL was injected per animal. Control animals were not stimulated, but had the same injection protocol as test animals. 90 seconds after the final injection, a blood sample was collected and the cerebrovasculature was flushed. Each brain was removed, equally divided, and homogenized. Post-centrifugation supernatant from blood and tissue homogenates was analyzed using fluorescent spectrometry. FITC concentrations were calculated using known standards. An uptake ratio was calculated by dividing sample FITC concentration by blood FITC concentration. RESULTS >Data from 4 control animals and 4 test animals demonstrated a significantly greater uptake ratio in test brains compared with control brains (P = 0.001). A significantly increased uptake ratio was also observed in both right and left hemispheres of test animals compared with controls (right, P = 0.03; left, P = 0.01). CONCLUSION Stimulation of SPG fibers significantly increased BBB permeability in both cerebral hemispheres of test animals when compared with controls.

2005 ◽  
Vol 289 (2) ◽  
pp. H738-H743 ◽  
Author(s):  
Tracy A. Brooks ◽  
Brian T. Hawkins ◽  
Jason D. Huber ◽  
Richard D. Egleton ◽  
Thomas P. Davis

The blood-brain barrier (BBB) maintains brain homeostasis by limiting entry of substances to the central nervous system through interaction of transmembrane and intracellular proteins that make up endothelial cell tight junctions (TJs). Recently it was shown that the BBB can be modulated by disease pathologies including inflammatory pain. This study examined the effects of chronic inflammatory pain on the functional and molecular integrity of the BBB. Inflammatory pain was induced by injection of complete Freund's adjuvant (CFA) into the right plantar hindpaw in female Sprague-Dawley rats under halothane anesthesia; control animals were injected with saline. Edema and hyperalgesia were assessed by plethysmography and infrared paw-withdrawal latency. At 72 h postinjection, significant edema formation and hyperalgesia were noted in the CFA-treated rats. Examination of permeability of the BBB by in situ perfusion of [14C]sucrose while rats were under pentobarbital anesthesia demonstrated that CFA treatment significantly increased brain sucrose uptake. Western blot analysis of BBB TJ proteins showed no change in expression of zonula occludens-1 (an accessory protein) or actin (a cytoskeletal protein) with CFA treatment. Expression of the transmembrane TJ proteins occludin and claudin-3 and -5 significantly changed with CFA treatment with a 60% decrease in occludin, a 450% increase in claudin-3, and a 615% increase in claudin-5 expression. This study demonstrates that during chronic inflammatory pain, alterations in BBB function are associated with changes in specific transmembrane TJ proteins.


2019 ◽  
Vol 20 (3) ◽  
pp. 571 ◽  
Author(s):  
Shotaro Michinaga ◽  
Yutaka Koyama

The blood-brain barrier (BBB) is a major functional barrier in the central nervous system (CNS), and inhibits the extravasation of intravascular contents and transports various essential nutrients between the blood and the brain. After brain damage by traumatic brain injury, cerebral ischemia and several other CNS disorders, the functions of the BBB are disrupted, resulting in severe secondary damage including brain edema and inflammatory injury. Therefore, BBB protection and recovery are considered novel therapeutic strategies for reducing brain damage. Emerging evidence suggests key roles of astrocyte-derived factors in BBB disruption and recovery after brain damage. The astrocyte-derived vascular permeability factors include vascular endothelial growth factors, matrix metalloproteinases, nitric oxide, glutamate and endothelin-1, which enhance BBB permeability leading to BBB disruption. By contrast, the astrocyte-derived protective factors include angiopoietin-1, sonic hedgehog, glial-derived neurotrophic factor, retinoic acid and insulin-like growth factor-1 and apolipoprotein E which attenuate BBB permeability resulting in recovery of BBB function. In this review, the roles of these astrocyte-derived factors in BBB function are summarized, and their significance as therapeutic targets for BBB protection and recovery after brain damage are discussed.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Qianshuo Liu ◽  
Xiaobai Liu ◽  
Defeng Zhao ◽  
Xuelei Ruan ◽  
Rui Su ◽  
...  

AbstractThe blood–brain barrier (BBB) has a vital role in maintaining the homeostasis of the central nervous system (CNS). Changes in the structure and function of BBB can accelerate Alzheimer’s disease (AD) development. β-Amyloid (Aβ) deposition is the major pathological event of AD. We elucidated the function and possible molecular mechanisms of the effect of pseudogene ACTBP2 on the permeability of BBB in Aβ1–42 microenvironment. BBB model treated with Aβ1–42 for 48 h were used to simulate Aβ-mediated BBB dysfunction in AD. We proved that pseudogene ACTBP2, RNA-binding protein KHDRBS2, and transcription factor HEY2 are highly expressed in ECs that were obtained in a BBB model in vitro in Aβ1–42 microenvironment. In Aβ1–42-incubated ECs, ACTBP2 recruits methyltransferases KMT2D and WDR5, binds to KHDRBS2 promoter, and promotes KHDRBS2 transcription. The interaction of KHDRBS2 with the 3′UTR of HEY2 mRNA increases the stability of HEY2 and promotes its expression. HEY2 increases BBB permeability in Aβ1–42 microenvironment by transcriptionally inhibiting the expression of ZO-1, occludin, and claudin-5. We confirmed that knocking down of Khdrbs2 or Hey2 increased the expression levels of ZO-1, occludin, and claudin-5 in APP/PS1 mice brain microvessels. ACTBP2/KHDRBS2/HEY2 axis has a crucial role in the regulation of BBB permeability in Aβ1–42 microenvironment, which may provide a novel target for the therapy of AD.


1999 ◽  
Vol 19 (9) ◽  
pp. 1020-1028 ◽  
Author(s):  
Yvan Gasche ◽  
Miki Fujimura ◽  
Yuiko Morita-Fujimura ◽  
Jean-Christophe Copin ◽  
Makoto Kawase ◽  
...  

During cerebral ischemia blood–brain barrier (BBB) disruption is a critical event leading to vasogenic edema and secondary brain injury. Gelatinases A and B are matrix metalloproteinases (MMP) able to open the BBB. The current study analyzes by zymography the early gelatinases expression and activation during permanent ischemia in mice (n = 15). ProMMP-9 expression was significantly ( P < 0.001) increased in ischemic regions compared with corresponding contralateral regions after 2 hours of ischemia (mean 694.7 arbitrary units [AU], SD ± 238.4 versus mean 107.6 AU, SD ± 15.6) and remained elevated until 24 hours (mean 745,7 AU, SD ± 157.4). Moreover, activated MMP-9 was observed 4 hours after the initiation of ischemia. At the same time as the appearance of activated MMP-9, we detected by the Evan's blue extravasation method a clear increase of BBB permeability, Tissue inhibitor of metalloproteinase-1 was not modified during permanent ischemia at any time. The ProMMP-2 was significantly ( P < 0.05) increased only after 24 hours of permanent ischemia (mean 213.2 AU, SD ± 60.6 versus mean 94.6 AU, SD ± 13.3), and no activated form was observed. The appearance of activated MMP-9 after 4 hours of ischemia in correlation with BBB permeability alterations suggests that MMP-9 may play an active role in early vasogenic edema development after stroke.


2017 ◽  
Vol 38 (11) ◽  
pp. 1979-1992 ◽  
Author(s):  
Jiajia Zhu ◽  
Xing Li ◽  
Jia Yin ◽  
Yafang Hu ◽  
Yong Gu ◽  
...  

The role of glycocalyx in blood–brain barrier (BBB) integrity and brain damage is poorly understood. Our study aimed to investigate the impacts of endothelial glycocalyx on BBB function in a rat model of cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). Male Sprague-Dawley rats subjected to 8-min asphyxia CA/CPR. Compared to controls, glycocalyx was mildly injured by CA, severely disrupted by hyaluronidase (HAase) with CA, and mitigated by hydrocortisone (HC) with CA. More importantly, the disruption of glycocalyx caused by HAase treatment was associated with higher BBB permeability and aggravated brain edema at 24 h after return of spontaneous circulation, as well as lower survival rate and poorer neurologic outcome at seventh day. Reversely, less degradation of glycocalyx by HC treatment was accompanied by higher seven-day survival rate and better neurologic outcome. Mechanistically, HAase treatment further increased CA/CPR-induced activation of glia cells and expression of inflammatory factors, whereas HC decreased them in the brain cortex and hippocampus. Glycocalyx degradation results in BBB leakage, brain edema, and deteriorates neurologic outcome after asphyxia CA/CPR in rats. Preservation of glycocalyx by HC could improve neurologic outcome and reduce BBB permeability, apparently through reduced gene transcription-protein synthesis and inflammation.


2020 ◽  
Author(s):  
Xiaoqing Li ◽  
Vamsidhara Vemireddy ◽  
Qi Cai ◽  
Hejian Xiong ◽  
Peiyuan Kang ◽  
...  

AbstractThe blood-brain barrier (BBB) tightly regulates the entry of molecules into the brain by tight junctions that seals the paracellular space and receptor-mediated transcytosis. It remains elusive to selectively modulate these mechanisms and to overcome BBB without significant neurotoxicity. Here we report that light stimulation of tight junction-targeted plasmonic nanoparticles selectively opens up the paracellular route to allow diffusion through the compromised tight junction and into the brain parenchyma. The BBB modulation does not impair vascular dynamics and associated neurovascular coupling, or cause significant neural injury. It further allows antibody and adeno-associated virus delivery into local brain regions. This novel method offers the first evidence of selectively modulating BBB tight junctions and opens new avenues for therapeutic interventions in the central nervous system.One Sentence SummaryGentle stimulation of molecular-targeted nanoparticles selectively opens up the paracellular pathway and allows macromolecules and gene therapy vectors into the brain.


2008 ◽  
Vol 19 (1) ◽  
pp. 83-92 ◽  
Author(s):  
Katarzyna Nierwińska ◽  
Elżbieta Malecka ◽  
Małgorzata Chalimoniuk ◽  
Aleksandra Żebrowska ◽  
Józef Langfort

Blood-Brain Barrier and Exercise – a Short ReviewBlood-brain barier (BBB) segregates central nervous system (CNS) from the circulating blood. BBB is formed by the brain capillary endothelial cells with complex tight junctions between them as well as by astrocytes and pericytes. BBB is responsible for transport of selected chemicals into and out of the CNS as well as for its protection from fluctuations in plasma composition following meals, during exercise and from circulating agents such as neurotransmitters, xenobiotics and other potentially harmful substances capable to disturb neural function. BBB may be compromised during CNS injury, infection, fever and in some nerodegenerative diseases. The increase of BBB permeability was observed also during exercise as documented by changes of plasma S-100 protein levels, used as a peripheral marker of BBB integrity. Marked change in BBB integrity during exercise may disturb normal brain function and contribute to the development of central fatigue. Moreover, serum S-100β may indicate level of injury in individuals suffering brain injuries during sports. There are also data suggesting that acute effect of physical exercise on serum S100β levels may not be related with CNS injury. Further studies to establish whether training and which type of it may modulate BBB permeability are needed.


2020 ◽  
Vol 18 (12) ◽  
pp. 1250-1265 ◽  
Author(s):  
Yi Yang ◽  
Michel T. Torbey

Angiogenesis, the growth of new blood vessels, is a natural defense mechanism helping to restore oxygen and nutrient supply to the affected brain tissue following an ischemic stroke. By stimulating vessel growth, angiogenesis may stabilize brain perfusion, thereby promoting neuronal survival, brain plasticity, and neurologic recovery. However, therapeutic angiogenesis after stroke faces challenges: new angiogenesis-induced vessels have a higher than normal permeability, and treatment to promote angiogenesis may exacerbate outcomes in stroke patients. The development of therapies requires elucidation of the precise cellular and molecular basis of the disease. Microenvironment homeostasis of the central nervous system is essential for its normal function and is maintained by the blood-brain barrier (BBB). Tight junction proteins (TJP) form the tight junction (TJ) between vascular endothelial cells (ECs) and play a key role in regulating the BBB permeability. We demonstrated that after stroke, new angiogenesis-induced vessels in peri-infarct areas have abnormally high BBB permeability due to a lack of major TJPs in ECs. Therefore, promoting TJ formation and BBB integrity in the new vessels coupled with speedy angiogenesis will provide a promising and safer treatment strategy for improving recovery from stroke. Pericyte is a central neurovascular unite component in vascular barriergenesis and are vital to BBB integrity. We found that pericytes also play a key role in stroke-induced angiogenesis and TJ formation in the newly formed vessels. Based on these findings, in this article, we focus on regulation aspects of the BBB functions and describe cellular and molecular special features of TJ formation with an emphasis on role of pericytes in BBB integrity during angiogenesis after stroke.


Sign in / Sign up

Export Citation Format

Share Document