Metric Spaces

2021 ◽  
pp. 103-125
Author(s):  
James Davidson

This chapter introduces and illustrates the concept of a metric (distance measure), and the definition of a metric space. Open, closed, and compact sets are discussed in a general context, and the concepts of separability and completeness introduced. It goes on to look at mappings on metric spaces, examines the important case of function spaces, and treats the Arzelà–Ascoli theorem.

2010 ◽  
Vol 31 (2) ◽  
pp. 527-547 ◽  
Author(s):  
DANIEL J. THOMPSON

AbstractWe give a new definition of topological pressure for arbitrary (non-compact, non-invariant) Borel subsets of metric spaces. This new quantity is defined via a suitable variational principle, leading to an alternative definition of an equilibrium state. We study the properties of this new quantity and compare it with existing notions of topological pressure. We are particularly interested in the situation when the ambient metric space is assumed to be compact. We motivate our definition by applying it to some interesting examples, including the level sets of the pointwise Lyapunov exponent for the Manneville–Pomeau family of maps.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 32
Author(s):  
Pragati Gautam ◽  
Luis Manuel Sánchez Ruiz ◽  
Swapnil Verma

The purpose of this study is to introduce a new type of extended metric space, i.e., the rectangular quasi-partial b-metric space, which means a relaxation of the symmetry requirement of metric spaces, by including a real number s in the definition of the rectangular metric space defined by Branciari. Here, we obtain a fixed point theorem for interpolative Rus–Reich–Ćirić contraction mappings in the realm of rectangular quasi-partial b-metric spaces. Furthermore, an example is also illustrated to present the applicability of our result.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 884 ◽  
Author(s):  
Tahair Rasham ◽  
Giuseppe Marino ◽  
Abdullah Shoaib

Recently, George et al. (in Georgea, R.; Radenovicb, S.; Reshmac, K.P.; Shuklad, S. Rectangular b-metric space and contraction principles. J. Nonlinear Sci. Appl. 2015, 8, 1005–1013) furnished the notion of rectangular b-metric pace (RBMS) by taking the place of the binary sum of triangular inequality in the definition of a b-metric space ternary sum and proved some results for Banach and Kannan contractions in such space. In this paper, we achieved fixed-point results for a pair of F-dominated mappings fulfilling a generalized rational F-dominated contractive condition in the better framework of complete rectangular b-metric spaces complete rectangular b-metric spaces. Some new fixed-point results with graphic contractions for a pair of graph-dominated mappings on rectangular b-metric space have been obtained. Some examples are given to illustrate our conclusions. New results in ordered spaces, partial b-metric space, dislocated metric space, dislocated b-metric space, partial metric space, b-metric space, rectangular metric spaces, and metric space can be obtained as corollaries of our results.


2017 ◽  
Vol 20 (K2) ◽  
pp. 107-116
Author(s):  
Diem Thi Hong Huynh

We show first the definition of variational convergence of unifunctions and their basic variational properties. In the next section, we extend this variational convergence definition in case the functions which are defined on product two sets (bifunctions or bicomponent functions). We present the definition of variational convergence of bifunctions, icluding epi/hypo convergence, minsuplop convergnece and maxinf-lop convergence, defined on metric spaces. Its variational properties are also considered. In this paper, we concern on the properties of epi/hypo convergence to apply these results on optimization proplems in two last sections. Next we move on to the main results that are approximations of typical and important optimization related problems on metric space in terms of the types of variational convergence are equilibrium problems, and multiobjective optimization. When we applied to the finite dimensional case, some of our results improve known one.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Ryan Joseph Rogers ◽  
Ning Zhong

In this note, we provide the definition of a metric space and establish that, while all Euclidean spaces are metric spaces, not all metric spaces are Euclidean spaces. It is then natural and interesting to ask which theorems that hold in Euclidean spaces can be extended to general metric spaces and which ones cannot be extended. We survey this topic by considering six well-known theorems which hold in Euclidean spaces and rigorously exploring their validities in general metric spaces.


1999 ◽  
Vol 64 (3) ◽  
pp. 1295-1306 ◽  
Author(s):  
Marion Scheepers

AbstractIn a previous paper—[17]—we characterized strong measure zero sets of reals in terms of a Ramseyan partition relation on certain subspaces of the Alexandroff duplicate of the unit interval. This framework gave only indirect access to the relevant sets of real numbers. We now work more directly with the sets in question, and since it costs little in additional technicalities, we consider the more general context of metric spaces and prove:1. If a metric space has a covering property of Hurewicz and has strong measure zero, then its product with any strong measure zero metric space is a strong measure zero metric space (Theorem 1 and Lemma 3).2. A subspace X of a σ-compact metric space Y has strong measure zero if, and only if, a certain Ramseyan partition relation holds for Y (Theorem 9).3. A subspace X of a σ-compact metric space Y has strong measure zero in all finite powers if, and only if, a certain Ramseyan partition relation holds for Y (Theorem 12).Then 2 and 3 yield characterizations of strong measure zeroness for σ-totally bounded metric spaces in terms of Ramseyan theorems.


2017 ◽  
Vol 5 (1) ◽  
pp. 98-115 ◽  
Author(s):  
Eero Saksman ◽  
Tomás Soto

Abstract We establish trace theorems for function spaces defined on general Ahlfors regular metric spaces Z. The results cover the Triebel-Lizorkin spaces and the Besov spaces for smoothness indices s < 1, as well as the first order Hajłasz-Sobolev space M1,p(Z). They generalize the classical results from the Euclidean setting, since the traces of these function spaces onto any closed Ahlfors regular subset F ⊂ Z are Besov spaces defined intrinsically on F. Our method employs the definitions of the function spaces via hyperbolic fillings of the underlying metric space.


2010 ◽  
Vol 02 (04) ◽  
pp. 581-597 ◽  
Author(s):  
E. VEOMETT ◽  
K. WILDRICK

Mendel and Naor's definition of metric cotype extends the notion of the Rademacher cotype of a Banach space to all metric spaces. Every Banach space has metric cotype at least 2. We show that any metric space that is bi-Lipschitz is equivalent to an ultrametric space having infimal metric cotype 1. We discuss the invariance of metric cotype inequalities under snowflaking mappings and Gromov–Hausdorff limits, and use these facts to establish a partial converse of the main result.


2021 ◽  
pp. 3031-3038
Author(s):  
Raghad I. Sabri

      The theories of metric spaces and fuzzy metric spaces are crucial topics in mathematics.    Compactness is one of the most important and fundamental properties that have been widely used in Functional Analysis. In this paper, the definition of compact fuzzy soft metric space is introduced and some of its important theorems are investigated. Also, sequentially compact fuzzy soft metric space and locally compact fuzzy soft metric space are defined and the relationships between them are studied. Moreover, the relationships between each of the previous two concepts and several other known concepts are investigated separately. Besides, the compact fuzzy soft continuous functions are studied and some essential theorems are proved.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Rasoul Abazari

AbstractIn this paper, the concept of probabilistic g-metric space with degree l, which is a generalization of probabilistic G-metric space, is introduced. Then, by endowing strong topology, the definition of l-dimensional asymptotic density of a subset A of $\mathbb{N}^{l}$ N l is used to introduce a statistically convergent and Cauchy sequence and to study some basic facts.


Sign in / Sign up

Export Citation Format

Share Document