Ground-based Remote Sensing of Cirrus Clouds
Cirrus clouds have only recently been recognized as having a significant influence on weather and climate through their impact on the radiative energy budget of the atmosphere. In addition, the unique difficulties presented by the study of cirrus put them on the “back burner” of atmospheric research for much of the twentieth century. Foremost, because they inhabit the frigid upper troposphere, their inaccessibility has hampered intensive research. Other factors have included a lack of in situ instrumentation to effectively sample the clouds and environment, and basic uncertainties in the underlying physics of ice cloud formation, growth, and maintenance. Cloud systems that produced precipitation, severe weather, or hazards to aviation were deemed more worthy of research support until the mid- 1980s. Beginning at this time, however, major field research programs such as the First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE; Cox et al. 1987), International Cirrus Experiment (ICE; Raschke et al. 1990), Experimental Cloud Lidar Pilot Study (ECLIPS; Platt et al. 1994), and the Atmospheric Radiation Measurement (ARM) Program (Stokes and Schwartz 1994) have concentrated on cirrus cloud research, relying heavily on ground-based remote sensing observations combined with research aircraft. What has caused this change in research emphasis is an appreciation for the potentially significant role that cirrus play in maintaining the radiation balance of the earth-atmosphere system (Liou 1986). As climate change issues were treated more seriously, it was recognized that the effects, or feedbacks, of extensive high-level ice clouds in response to global warming could be pivotal. This fortunately came at a time when new generations of meteorological instrumentation were becoming available. Beginning in the early 1970s, major advancements were made in the fields of numerical cloud modeling and cloud measurements using aircraft probes, satellite multispectral imaging, and remote sensing with lidar, short-wavelength radar, and radiometers, all greatly facilitating cirrus research. Each of these experimental approaches have their advantages and drawbacks, and it should also be noted that a successful cloud modeling effort relies on field data for establishing boundary conditions and providing case studies for validation. Although the technologies created for in situ aircraft measurements can clearly provide unique knowledge of cirrus cloud thermodynamic and microphysical properties (Dowling and Radke 1990), available probes may suffer from limitations in their response to the wide range of cirrus particles and actually sample a rather small volume of cloud during any mission.