Century- to Millennial-Scale Climate Change and Ecosystem Response in Taylor Valley, Antarctica

Author(s):  
Andrew G. Fountain ◽  
W. Berry Lyons

The view of climate change during the Pleistocene and the Holocene was very much different a mere decade ago. With the collection and detailed analyses of ice core records from both Greenland and Antarctica in the early and mid-1990s, respectively, the collective view of climate variability during this time period has changed dramatically. During the Pleistocene, at least as far back as 450,000 years b.p., abrupt and severe temperature fluctuations were a regular occurrence rather than the exception (Mayewski et al. 1996, 1998; Petit et al. 1999). During the Pleistocene, these rapid and large climatic fluctuations, initially identified in the ice core records, have been verified in both marine and lacustrine sediments as well (Bond et al. 1993; Grimm et al. 1993), suggesting large-scale (hemispheric to global) climate restructuring over very short periods of time (Mayewski et al. 1997). Similar types of climatic fluctuations, but with smaller amplitudes, have also occurred during the Holocene (O’Brien et al. 1995; Bond et al. 1997; Arz et al. 2001). What were the biological responses to these changes in temperature, precipitation, and atmospheric chemistry? We must answer this question if we are to understand the century- to millennial-scale influence of climate on the structure and function of ecosystems. Because the polar regions are thought to be amplifiers of global climate change, these regions are ideal for investigating the response of ecological systems to, what in temperate regions might be considered, small-scale climatic variation. Our knowledge of past climatic variations in Antarctica comes from different types of proxy records, including ice core, geologic, and marine (Lyons et al. 1997). It is clear, however, that coastal Antarctica may respond to oceanic, atmospheric, and ice sheet–based climatic “drivers,” and therefore ice-free regions, such as the Mc- Murdo Dry Valleys, may respond to climate change in a much more complex manner than previously thought (R. Poreda, unpubl. data 2001). Since the initiation of the McMurdo Dry Valleys Long-Term Ecological Research program (MCM) in 1993, there has been a keen interest not only in the dynamics of the present day ecosystem, but also in the legacies produced via past climatic variation on the ecosystem. In this chapter we examine the current structure and function of the dry valleys ecosystem from the perspective of our work centered in Taylor Valley.

2011 ◽  
Vol 12 (2) ◽  
pp. 150-160 ◽  
Author(s):  
Frédérique Reverchon ◽  
Zhihong Xu ◽  
Timothy J. Blumfield ◽  
Chengrong Chen ◽  
Kadum M. Abdullah

Author(s):  
Jiban Mani Poudel

In the 21st century, global climate change has become a public and political discourse. However, there is still a wide gap between global and local perspectives. The global perspective focuses on climate fluctuations that affect the larger region; and their analysis is based on long-term records over centuries and millennium. By comparison, local peoples’ perspectives vary locally, and local analyses are limited to a few days, years, decades and generations only. This paper examines how farmers in Kirtipur of Kathmandu Valley, Nepal, understand climate variability in their surroundings. The researcher has used a cognized model to understand farmers’ perception on weather fluctuations and climate change. The researcher has documented several eyewitness accounts of farmers about weather fluctuations which they have been observing in a lifetime. The researcher has also used rainfall data from 1970-2009 to test the accuracy of perceptions. Unlike meteorological analyses, farmers recall and their understanding of climatic variability by weather-crop interaction, and events associating with climatic fluctuations and perceptions are shaped by both physical visibility and cultural frame or belief system.DOI: http://dx.doi.org/10.3126/hn.v11i1.7200 Hydro Nepal Special Issue: Conference Proceedings 2012 pp.30-34


2019 ◽  
Vol 13 (8) ◽  
pp. 2203-2219 ◽  
Author(s):  
Tobias Linhardt ◽  
Joseph S. Levy ◽  
Christoph K. Thomas

Abstract. The hydrologic cycle in the Antarctic McMurdo Dry Valleys (MDV) is mainly controlled by surface energy balance. Water tracks are channel-shaped high-moisture zones in the active layer of permafrost soils and are important solute and water pathways in the MDV. We evaluated the hypothesis that water tracks alter the surface energy balance in this dry, cold, and ice-sheet-free environment during summer warming and may therefore be an increasingly important hydrologic feature in the MDV in the face of landscape response to climate change. The surface energy balance was measured for one water track and two off-track reference locations in Taylor Valley over 26 d of the Antarctic summer of 2012–2013. Turbulent atmospheric fluxes of sensible heat and evaporation were observed using the eddy-covariance method in combination with flux footprint modeling, which was the first application of this technique in the MDV. Soil heat fluxes were analyzed by measuring the heat storage change in the thawed layer and approximating soil heat flux at ice table depth by surface energy balance residuals. For both water track and reference locations over 50 % of net radiation was transferred to sensible heat exchange, about 30 % to melting of the seasonally thawed layer, and the remainder to evaporation. The net energy flux in the thawed layer was zero. For the water track location, evaporation was increased by a factor of 3.0 relative to the reference locations, ground heat fluxes by 1.4, and net radiation by 1.1, while sensible heat fluxes were reduced down to 0.7. Expecting a positive snow and ground ice melt response to climate change in the MDV, we entertained a realistic climate change response scenario in which a doubling of the land cover fraction of water tracks increases the evaporation from soil surfaces in lower Taylor Valley in summer by 6 % to 0.36 mm d−1. Possible climate change pathways leading to this change in landscape are discussed. Considering our results, an expansion of water track area would make new soil habitats accessible, alter soil habitat suitability, and possibly increase biological activity in the MDV. In summary, we show that the surface energy balance of water tracks distinctly differs from that of the dominant dry soils in polar deserts. With an expected increase in area covered by water tracks, our findings have implications for hydrology and soil ecosystems across terrestrial Antarctica.


2009 ◽  
Vol 30 (2) ◽  
pp. 78
Author(s):  
Nicole S Webster ◽  
David G Bourne ◽  
Linda L Blackall

Microbes constitute the largest diversity and biomass of all marine organisms, yet they are often ignored during discussions about the impacts of environmental change. This is despite the fact that, of all the organisms on the planet, it is the microbes that will play the largest fundamental role in either mitigating or exacerbating the effects of global climate change. Microbes will also be the first and fastest to shift their metabolic capabilities, host range, function and community dynamics as a result of climate change. Therefore, an understanding of microbial community composition and function in individual niche habitats is vital.


1990 ◽  
Vol 14 ◽  
pp. 350
Author(s):  
R. Mulvaney ◽  
A.P. Reid ◽  
D A. Peel

A continuous, detailed, 200-years record of the anionic species, chloride, nitrate and sulphate, has been measured on an ice core from Dolleman Island (70°35.2′ S, 60°55.5′ W), Antarctic Peninsula. The site lies on the east coast of the Peninsula, and the chemistry of the core is dominated by the changing pattern of sea-ice distribution and storm activity in the Wed dell Sea. Strong annual cycles in chloride and non sea salt sulphate reflect the dominance of the seasonal cycle in sea-ice distribution in the Weddell Sea, observed in time series derived from satellite imagery since the early 1970s. However, in the case of chloride there is also an exceptionally strong interannual variability, which in many parts of the core dominates the seasonal cycle. Secular variations in the sea-ice extent appear to have a strong influence on the climate of the region and may play a major role in determining how long-term climate change in the Antarctic Peninsula relates to global climate change. The paper examines documented evidence for sea-ice extent in the Weddell Sea sector, and evaluates the usefulness of ice-core data for reconstructing this parameter in the earlier period.


2021 ◽  
Vol 129 (1) ◽  
pp. 017001
Author(s):  
Alexander N. Larcombe ◽  
Melissa G. Papini ◽  
Emily K. Chivers ◽  
Luke J. Berry ◽  
Robyn M. Lucas ◽  
...  

2021 ◽  
Author(s):  
Jessica Lloyd

Carbohydrates are ubiquitous in nature and present across all kingdoms of life – bacteria, fungi, viruses, yeast, plants, animals and humans. They are essential to many biological processes. However, due to their complexity and heterogeneous nature they are often neglected, sometimes referred to as the ‘dark matter’ of biology. Nevertheless, due to their extensive biological impact on health and disease, glycans and the field of glycobiology have become increasingly popular in recent years, giving rise to glycan-based drug development and therapeutics. Forecasting of communicable diseases predicts that we will see an increase in pandemics of humans and livestock due to global loss of biodiversity from changes to land use, intensification of agriculture, climate change and disruption of ecosystems. As such, the development of point-of-care devices to detect pathogens is vital to prevent the transmission of infectious disease, as we have seen with the COVID-19 pandemic. So, can glycans be exploited to detect COVID-19 and other infectious diseases? And is this technology sensitive and accurate? Here, I discuss the structure and function of glycans, the current glycan-based therapeutics and how glycan binding can be exploited for detection of infectious disease, like COVID-19.


AMBIO ◽  
2006 ◽  
Vol 35 (7) ◽  
pp. 359-369 ◽  
Author(s):  
Frederick J. Wrona ◽  
Terry D. Prowse ◽  
James D. Reist ◽  
John E. Hobbie ◽  
Lucie M. J. Lévesque ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document