Non-Linear Synthesis of Spectra

2021 ◽  
pp. 269-319
Author(s):  
Victor Lazzarini

This chapter turns away from the linear world of the Fourier transform and introduces the concepts related to non-linear operations as a means of spectral modification through waveshaping. The idea of non-linear functions applied to simple sinusoidal signals is explored from various perspectives. Closed-form summation formulae are first shown as examples of non-linear techniques. This is followed by a thorough discussion of phase and frequency modulation methods, themselves also shown to be based on the application of non-linear waveshaping methods. This is complemented by the techniques of phase distortion and the more general vector phase shaping algorithm. A look into adaptive forms of frequency modulation is followed by a complete study of polynomial and other forms of waveshaping.

2003 ◽  
Vol 3 ◽  
pp. 297-307
Author(s):  
V.V. Denisov

An approach to the study of the stability of non-linear multiply connected systems of automatic control by means of a fast Fourier transform and the resonance phenomenon is considered.


2021 ◽  
Vol 11 (6) ◽  
pp. 2582
Author(s):  
Lucas M. Martinho ◽  
Alan C. Kubrusly ◽  
Nicolás Pérez ◽  
Jean Pierre von der Weid

The focused signal obtained by the time-reversal or the cross-correlation techniques of ultrasonic guided waves in plates changes when the medium is subject to strain, which can be used to monitor the medium strain level. In this paper, the sensitivity to strain of cross-correlated signals is enhanced by a post-processing filtering procedure aiming to preserve only strain-sensitive spectrum components. Two different strategies were adopted, based on the phase of either the Fourier transform or the short-time Fourier transform. Both use prior knowledge of the system impulse response at some strain level. The technique was evaluated in an aluminum plate, effectively providing up to twice higher sensitivity to strain. The sensitivity increase depends on a phase threshold parameter used in the filtering process. Its performance was assessed based on the sensitivity gain, the loss of energy concentration capability, and the value of the foreknown strain. Signals synthesized with the time–frequency representation, through the short-time Fourier transform, provided a better tradeoff between sensitivity gain and loss of energy concentration.


2021 ◽  
Vol 262 ◽  
pp. 117928
Author(s):  
Shusaku Nakajima ◽  
Shuhei Horiuchi ◽  
Akifumi Ikehata ◽  
Yuichi Ogawa

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lung-Hui Chen

Abstract In this paper, we discuss how to partially determine the Fourier transform F ⁢ ( z ) = ∫ - 1 1 f ⁢ ( t ) ⁢ e i ⁢ z ⁢ t ⁢ 𝑑 t , z ∈ ℂ , F(z)=\int_{-1}^{1}f(t)e^{izt}\,dt,\quad z\in\mathbb{C}, given the data | F ⁢ ( z ) | {\lvert F(z)\rvert} or arg ⁡ F ⁢ ( z ) {\arg F(z)} for z ∈ ℝ {z\in\mathbb{R}} . Initially, we assume [ - 1 , 1 ] {[-1,1]} to be the convex hull of the support of the signal f. We start with reviewing the computation of the indicator function and indicator diagram of a finite-typed complex-valued entire function, and then connect to the spectral invariant of F ⁢ ( z ) {F(z)} . Then we focus to derive the unimodular part of the entire function up to certain non-uniqueness. We elaborate on the translation of the signal including the non-uniqueness associates of the Fourier transform. We show that the phase retrieval and magnitude retrieval are conjugate problems in the scattering theory of waves.


Author(s):  
Angela A. Albanese ◽  
Claudio Mele

AbstractIn this paper we continue the study of the spaces $${\mathcal O}_{M,\omega }({\mathbb R}^N)$$ O M , ω ( R N ) and $${\mathcal O}_{C,\omega }({\mathbb R}^N)$$ O C , ω ( R N ) undertaken in Albanese and Mele (J Pseudo-Differ Oper Appl, 2021). We determine new representations of such spaces and we give some structure theorems for their dual spaces. Furthermore, we show that $${\mathcal O}'_{C,\omega }({\mathbb R}^N)$$ O C , ω ′ ( R N ) is the space of convolutors of the space $${\mathcal S}_\omega ({\mathbb R}^N)$$ S ω ( R N ) of the $$\omega $$ ω -ultradifferentiable rapidly decreasing functions of Beurling type (in the sense of Braun, Meise and Taylor) and of its dual space $${\mathcal S}'_\omega ({\mathbb R}^N)$$ S ω ′ ( R N ) . We also establish that the Fourier transform is an isomorphism from $${\mathcal O}'_{C,\omega }({\mathbb R}^N)$$ O C , ω ′ ( R N ) onto $${\mathcal O}_{M,\omega }({\mathbb R}^N)$$ O M , ω ( R N ) . In particular, we prove that this isomorphism is topological when the former space is endowed with the strong operator lc-topology induced by $${\mathcal L}_b({\mathcal S}_\omega ({\mathbb R}^N))$$ L b ( S ω ( R N ) ) and the last space is endowed with its natural lc-topology.


Sign in / Sign up

Export Citation Format

Share Document