Abstract
Carbonate rocks are believed to be proven hydrocarbon reservoirs and are found in various basins of Pakistan including Lower Indus Basin. The carbonate rock intervals of the Jakkher Group from Paleocene to Oligocene age are distributed in south-western part of Lower Indus Basin of Pakistan. However, there are limited published petrophysical data sets on these carbonate rocks and are essential for field development and risk reduction. To fill this knowledge gap, this study is mainly established to collect the comprehensive high quality data sets on petrophysical properties of carbonate rocks along with their mineralogy and microstructure. Additionally, the study assesses the impact of diagenesis on quality of the unconventional tight carbonate resources. Experimental techniques include Scanning Electronic Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), and X-ray diffraction (XRD), photomicrography, Helium porosity and steady state gas permeability. Results revealed that the porosity was in range of 2.12 to 8.5% with an average value of 4.5% and the permeability was ranging from 0.013 to 5.8mD. Thin section study, SEM-EDS, and XRD analyses revealed that the samples mostly contain carbon (C), calcium (Ca), and magnesium (Mg) as dominant elemental components.The main carbonate components observed were calcite, dolomite, micrite, Ferron mud, bioclasts and intermixes of clay minerals and cementing materials. The analysis shows that: 1) the permeability and porosity cross plot, the permeability and slippage factor values cross plots appears to be scattered, which showed weaker correlation that was the reflection of carbonate rock heterogeneity. 2) The permeability and clay mineralogy cross plots have resulted in poor correlation in these carbonate samples. 3) Several diagenetic processes had influenced the quality of carbonates of Jakkher Group, such as pore dissolution, calcification, cementation, and compaction. 4) Reservoir quality was mainly affected by inter-mixing of clay, cementation, presence of micrite muds, grain compactions, and overburden stresses that all lead these carbonate reservoirs to ultra-tight reservoirs and are considered to be of very poor quality. 5) SEM and thin section observations shows incidence of micro-fractures and pore dissolution tended to improve reservoir quality.