Global temperature and life

Author(s):  
Andrew Clarke

The extreme meteorological surface air temperatures recorded to date are –89.2 oC in Antarctica, and 56.7 oC in Death Valley, California. Ground temperatures can be higher or lower than these air temperatures. The bulk of oceanic water is cold (< 4 oC) and thermally stable. Whilst data on limits to survival attract considerable attention, the thermal limits to completion of the life cycle (which define the limits to life) are much less well known. Currently identified upper thermal limits for growth are 122 oC for archaeans, 100 oC for bacteria and ~60 oC for unicellular eukaryotes. No unicells appear to grow below –20 oC, a limit that is probably set by dehydration-linked vitrification of the cell interior. The lower thermal limits for survival in multicellular organisms in the natural world extend to at least –70 oC. However in all cases known to date, completion of the life cycle requires summer warmth and the lowest temperature for completion of a multicellular eukaryote life cycle appears to be ~0 oC for invertebrates in glacial meltwater and ~–2 oC for marine invertebrates and fish living on the continental shelves around Antarctica.

Author(s):  
Judith Fuchs

This chapter describes the taxonomy of Phoronida, a small group of exclusively marine invertebrates found in most of the world's oceans from the intertidal zone to about 400 metres depth. Phoronids are meroplanktonic with a planktonic larval stage usually less than 2 mm in length and a benthic adult whose length ranges from a few cm up to 50 cm. The chapter covers their life cycle, ecology, and general morphology. It includes a section that indicates the systematic placement of the taxon described within the tree of life, and lists the key marine representative illustrated in the chapter (usually to genus or family level). This section also provides information on the taxonomic authorities responsible for the classification adopted, recent changes which might have occurred, and lists relevant taxonomic sources.


Biology Open ◽  
2021 ◽  
Vol 10 (12) ◽  

ABSTRACT First Person is a series of interviews with the first authors of a selection of papers published in Biology Open, helping early-career researchers promote themselves alongside their papers. Natalí Delorme and Leonardo Zamora are co-first authors on ‘ A new method to localise and quantify oxidative stress in live juvenile mussels’, published in BiO. They are both researchers in the laboratory of Serean Adams at the Cawthron Institute, Nelson, New Zealand. Natalí's research interests centre around ecophysiology of marine invertebrates, particularly on the organisms' stress response. Leonardo is investigating the biology of commercially, ecologically and culturally relevant marine invertebrates throughout their life cycle.


2016 ◽  
Vol 42 (2) ◽  
pp. 457 ◽  
Author(s):  
F. Hrbáček ◽  
M. Oliva ◽  
K. Laska ◽  
J. Ruiz-Fernández ◽  
M. A. De Pablo ◽  
...  

Permafrost controls geomorphic processes in ice-free areas of the Antarctic Peninsula (AP) region. Future climate trends will promote significant changes of the active layer regime and permafrost distribution, and therefore a better characterization of present-day state is needed. With this purpose, this research focuses on Ulu Peninsula (James Ross Island) and Byers Peninsula (Livingston Island), located in the area of continuous and discontinuous permafrost in the eastern and western sides of the AP, respectively. Air and ground temperatures in as low as 80 cm below surface of the ground were monitored between January and December 2014. There is a high correlation between air temperatures on both sites (r=0.74). The mean annual temperature in Ulu Peninsula was -7.9 ºC, while in Byers Peninsula was -2.6 ºC. The lower air temperatures in Ulu Peninsula are also reflected in ground temperatures, which were between 4.9 (5 cm) and 5.9 ºC (75/80 cm) lower. The maximum active layer thickness observed during the study period was 52 cm in Ulu Peninsula and 85 cm in Byers Peninsula. Besides climate, soil characteristics, topography and snow cover are the main factors controlling the ground thermal regime in both areas.


2018 ◽  
Vol 12 (6) ◽  
pp. 1957-1968 ◽  
Author(s):  
Charles J. Abolt ◽  
Michael H. Young ◽  
Adam L. Atchley ◽  
Dylan R. Harp

Abstract. The goal of this research is to constrain the influence of ice wedge polygon microtopography on near-surface ground temperatures. Ice wedge polygon microtopography is prone to rapid deformation in a changing climate, and cracking in the ice wedge depends on thermal conditions at the top of the permafrost; therefore, feedbacks between microtopography and ground temperature can shed light on the potential for future ice wedge cracking in the Arctic. We first report on a year of sub-daily ground temperature observations at 5 depths and 9 locations throughout a cluster of low-centered polygons near Prudhoe Bay, Alaska, and demonstrate that the rims become the coldest zone of the polygon during winter, due to thinner snowpack. We then calibrate a polygon-scale numerical model of coupled thermal and hydrologic processes against this dataset, achieving an RMSE of less than 1.1 ∘C between observed and simulated ground temperature. Finally, we conduct a sensitivity analysis of the model by systematically manipulating the height of the rims and the depth of the troughs and tracking the effects on ice wedge temperature. The results indicate that winter temperatures in the ice wedge are sensitive to both rim height and trough depth, but more sensitive to rim height. Rims act as preferential outlets of subsurface heat; increasing rim size decreases winter temperatures in the ice wedge. Deeper troughs lead to increased snow entrapment, promoting insulation of the ice wedge. The potential for ice wedge cracking is therefore reduced if rims are destroyed or if troughs subside, due to warmer conditions in the ice wedge. These findings can help explain the origins of secondary ice wedges in modern and ancient polygons. The findings also imply that the potential for re-establishing rims in modern thermokarst-affected terrain will be limited by reduced cracking activity in the ice wedges, even if regional air temperatures stabilize.


2014 ◽  
Vol 13 (2) ◽  
pp. 141-154 ◽  
Author(s):  
Andrew Clarke

AbstractLiving organisms on Earth are characterized by three necessary features: a set of internal instructions encoded in DNA (software), a suite of proteins and associated macromolecules providing a boundary and internal structure (hardware), and a flux of energy. In addition, they replicate themselves through reproduction, a process that renders evolutionary change inevitable in a resource-limited world. Temperature has a profound effect on all of these features, and yet life is sufficiently adaptable to be found almost everywhere water is liquid. The thermal limits to survival are well documented for many types of organisms, but the thermal limits to completion of the life cycle are much more difficult to establish, especially for organisms that inhabit thermally variable environments. Current data suggest that the thermal limits to completion of the life cycle differ between the three major domains of life, bacteria, archaea and eukaryotes. At the very highest temperatures only archaea are found with the current high-temperature limit for growth being 122 °C. Bacteria can grow up to 100 °C, but no eukaryote appears to be able to complete its life cycle above ∼60 °C and most not above 40 °C. The lower thermal limit for growth in bacteria, archaea, unicellular eukaryotes where ice is present appears to be set by vitrification of the cell interior, and lies at ∼−20 °C. Lichens appear to be able to grow down to ∼−10 °C. Higher plants and invertebrates living at high latitudes can survive down to ∼−70 °C, but the lower limit for completion of the life cycle in multicellular organisms appears to be ∼−2 °C.


2015 ◽  
Vol 11 (6) ◽  
pp. 20150157 ◽  
Author(s):  
Odile Maliet ◽  
Deborah E. Shelton ◽  
Richard E. Michod

During the evolution of multicellular organisms, the unit of selection and adaptation, the individual, changes from the single cell to the multicellular group. To become individuals, groups must evolve a group life cycle in which groups reproduce other groups. Investigations into the origin of group reproduction have faced a chicken-and-egg problem: traits related to reproduction at the group level often appear both to be a result of and a prerequisite for natural selection at the group level. With a focus on volvocine algae, we model the basic elements of the cell cycle and show how group reproduction can emerge through the coevolution of a life-history trait with a trait underpinning cell cycle change. Our model explains how events in the cell cycle become reordered to create a group life cycle through continuous change in the cell cycle trait, but only if the cell cycle trait can coevolve with the life-history trait. Explaining the origin of group reproduction helps us understand one of life's most familiar, yet fundamental, aspects—its hierarchical structure.


2006 ◽  
Vol 2 (3) ◽  
pp. 423-425 ◽  
Author(s):  
Catherine Dreanno ◽  
Richard R Kirby ◽  
Anthony S Clare

A critical phase in the life cycle of sessile benthic marine invertebrates is locating a suitable substratum for settlement. For barnacles, it is the lecithotrophic cypris larva that makes this plankto–benthic transition. In exploring possible substrata for settlement, the cyprid leaves behind ‘footprints’ of a proteinaceous secretion that reportedly functions as a temporary adhesive, and also acts as a secondary cue in larval–larval interactions at settlement. Here, we show that two polyclonal antibodies raised against peptides localized at the N- and C-terminal regions of the adult settlement cue—the settlement-inducing protein complex (SIPC)—could both detect ‘temporary adhesive’ indicating that the SIPC is either a component of this secretion or that they are the same protein.


2011 ◽  
Vol 5 (1) ◽  
pp. 13-33 ◽  
Author(s):  
G. Grosse ◽  
B. M. Jones

Abstract. Pingos are prominent periglacial landforms in vast regions of the Arctic and Subarctic. They are indicators of modern and past conditions of permafrost, surface geology, hydrology and climate. A first version of a detailed spatial geodatabase of 6059 pingo locations in a 3.5×106 km2 region of northern Asia was assembled from topographic maps. A first order analysis was carried out with respect to permafrost, landscape characteristics, surface geology, hydrology, climate, and elevation datasets using a Geographic Information System (GIS). Pingo heights in the dataset vary between 2 and 37 m, with a mean height of 4.8 m. About 64% of the pingos occur in continuous permafrost with high ice content and thick sediments; another 19% in continuous permafrost with moderate ice content and thick sediments. The majority of these pingos are likely hydrostatic pingos, which are typical of those located in drained thermokarst lake basins of northern lowlands with continuous permafrost. About 82% of the pingos are located in the tundra bioclimatic zone. Most pingos in the dataset are located in regions with mean annual ground temperatures between −3 and −11 °C and mean annual air temperatures between −7 and −18 °C. The dataset confirms that surface geology and hydrology are key factors for pingo formation and occurrence. Based on model predictions for near-future permafrost distribution, about 2073 pingos (34%) along the southern margins of permafrost will be located in regions with thawing permafrost by 2100, which ultimately may lead to increased occurrence of pingo collapse. Based on our dataset and previously published estimates of pingo numbers from other regions, we conclude that there are more than 11 000 pingos on Earth.


1979 ◽  
Vol 57 (5) ◽  
pp. 1052-1056 ◽  
Author(s):  
Alan D. Afton

Egg air cell and nest air temperatures, measured in nests of wild northern shovelers near Delta, Manitoba, Canada, averaged 36.1 and 32.0 °C, respectively. Mean brood patch temperature of one captive incubating hen was 39.5 °C. Body temperature of 16 wild incubating hens averaged 41.1 °C. An egg cooling rate of 0.22 °C/1 °C h−1 was calculated from temperature records of 170 incubation recesses. Factors affecting egg cooling during recesses were investigated using multiple regression analysis. Statements in the literature that incubation by Anatidae begins upon termination of laying are not supported by available data. Incubation by waterfowl, as in passerines, apparently begins gradually during the laying period. Air and ground temperatures, by influencing egg cooling rates during incubation, may have been important ultimate factors determining the breeding range and timing of the breeding season for the northern shoveler.


Sign in / Sign up

Export Citation Format

Share Document