scholarly journals Interaction between molecular clouds and MeV–TeV cosmic-ray protons escaped from supernova remnants

Author(s):  
Ken Makino ◽  
Yutaka Fujita ◽  
Kumiko K Nobukawa ◽  
Hironori Matsumoto ◽  
Yutaka Ohira

Abstract Recent discovery of the X-ray neutral iron line (Fe  i Kα at 6.40 keV) around several supernova remnants (SNRs) show that MeV cosmic-ray (CR) protons are distributed around the SNRs and are interacting with neutral gas there. We propose that these MeV CRs are the ones that have been accelerated at the SNRs together with GeV–TeV CRs. In our analytical model, the MeV CRs are still confined in the SNR when the SNR collides with molecular clouds. After the collision, the MeV CRs leak into the clouds and produce the neutral iron line emissions. On the other hand, GeV–TeV CRs had already escaped from the SNRs and emitted gamma-rays through interaction with molecular clouds surrounding the SNRs. We apply this model to the SNRs W 28 and W 44 and show that it can reproduce the observations of the iron line intensities and the gamma-ray spectra. This could be additional support of the hadronic scenario for the gamma-ray emissions from these SNRs.

2020 ◽  
Vol 635 ◽  
pp. A40
Author(s):  
V. H. M. Phan ◽  
S. Gabici ◽  
G. Morlino ◽  
R. Terrier ◽  
J. Vink ◽  
...  

Context. Supernova remnants interacting with molecular clouds are ideal laboratories to study the acceleration of particles at shock waves and their transport and interactions in the surrounding interstellar medium. Aims. Here, we focus on the supernova remnant W28, which over the years has been observed in all energy domains from radio waves to very-high-energy gamma rays. The bright gamma-ray emission detected from molecular clouds located in its vicinity revealed the presence of accelerated GeV and TeV particles in the region. An enhanced ionization rate has also been measured by means of millimeter observations, but such observations alone cannot tell us whether the enhancement is due to low-energy (MeV) cosmic rays (either protons or electrons) or the X-ray photons emitted by the shocked gas. The goal of this study is to determine the origin of the enhanced ionization rate and to infer from multiwavelength observations the spectrum of cosmic rays accelerated at the supernova remnant shock in an unprecedented range spanning from MeV to multi-TeV particle energies. Methods. We developed a model to describe the transport of X-ray photons into the molecular cloud, and we fitted the radio, millimeter, and gamma-ray data to derive the spectrum of the radiating particles. Results. The contribution from X-ray photons to the enhanced ionization rate is negligible, and therefore the ionization must be due to cosmic rays. Even though we cannot exclude a contribution to the ionization rate coming from cosmic-ray electrons, we show that a scenario where cosmic-ray protons explain both the gamma-ray flux and the enhanced ionization rate provides the most natural fit to multiwavelength data. This strongly suggests that the intensity of CR protons is enhanced in the region for particle energies in a very broad range covering almost six orders of magnitude: from ≲100 MeV up to several tens of TeV.


2020 ◽  
Vol 492 (3) ◽  
pp. 4246-4253 ◽  
Author(s):  
Yan Huang ◽  
Zhuo Li ◽  
Wei Wang ◽  
Xiaohong Zhao

ABSTRACT The synchrotron radiation from secondary electrons and positrons (SEPs) generated by hadronic interactions in the shock of supernova remnant (SNR) could be a distinct evidence of cosmic ray (CR) production in SNR shocks. Here, we provide a method where the observed gamma-ray flux from SNRs, created by pion decays, is directly used to derive the SEP distribution and hence the synchrotron spectrum. We apply the method to three gamma-ray bright SNRs. In the young SNR RX J1713.7−3946, if the observed GeV−TeV gamma-rays are of hadronic origin and the magnetic field in the SNR shock is B ≳ 0.5 mG, the SEPs may produce a spectral bump at 10−5–10−2 eV, exceeding the predicted synchrotron component of the leptonic model, and a soft spectral tail at ≳100 keV, distinct from the hard spectral slope in the leptonic model. In the middle-aged SNRs IC443 and W44, if the observed gamma-rays are of hadronic origin, the SEP synchrotron radiation with B ∼ 400–500 μG can well account for the observed radio flux and spectral slopes, supporting the hadronic origin of gamma-rays. Future microwave to far-infrared and hard X-ray (>100keV) observations are encouraged to constraining the SEP radiation and the gamma-ray origin in SNRs.


2017 ◽  
Vol 12 (S331) ◽  
pp. 268-273
Author(s):  
O. Petruk ◽  
S. Orlando ◽  
M. Miceli

AbstractAcceleration times of particles responsible for the gamma-rays in supernova remnants (SNRs) are comparable with SNR age. If the number of particles starting acceleration was varying during early times after the supernova explosion then this variation should be reflected in the shape of the gamma-ray spectrum. In order to analyse this effect, we consider the time variation of the radio spectral index in SN1987A and solution of the non-stationary equation for particle acceleration. We reconstruct evolution of the particle injection in SN1987A, apply it to derive the particle momentum distribution in IC443 and model its gamma-ray spectrum. We show that: i) observed break in the proton spectrum around 50 GeV in IC443 is a consequence of the variation of the cosmic ray injection; ii) shape of the hadronic gamma-ray spectrum in SNRs critically depends on the temporal variation of the cosmic ray injection in the immediate post explosion phases.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Hiromasa Suzuki ◽  
Aya Bamba ◽  
Ryo Yamazaki ◽  
Yutaka Ohira

Abstract In the current decade, GeV/TeV gamma-ray observations of several supernova remnants (SNRs) have implied that accelerated particles are escaping from their acceleration sites. However, when and how they escape from the SNR vicinities are yet to be understood. Recent studies have suggested that the particle escape might develop with thermal plasma ages of the SNRs. We present a systematic study on the time evolution of particle escape using thermal X-ray properties and gamma-ray spectra using 38 SNRs associated with GeV/TeV gamma-ray emissions. We conducted spectral fittings on the gamma-ray spectra using exponential cutoff power-law and broken power-law models to estimate the exponential cutoff or the break energies, both of which are indicators of particle escape. Plots of the gamma-ray cutoff/break energies over the plasma ages show similar tendencies to those predicted by analytical/numerical calculations of particle escape under conditions in which a shock is interacting with thin interstellar medium or clouds. The particle escape timescale is estimated as ∼100 kyr from the decreasing trends of the total energy of the confined protons with the plasma age. The large dispersions of the cutoff/break energies in the data may suggest an intrinsic variety of particle escape environments. This might be the cause of the complicated Galactic cosmic ray spectral shape measured on Earth.


2019 ◽  
Vol 489 (1) ◽  
pp. 108-115 ◽  
Author(s):  
P Cristofari ◽  
P Blasi

ABSTRACT Diffusive shock acceleration is considered as the main mechanism for particle energization in supernova remnants, as well as in other classes of sources. The existence of some remnants that show a bilateral morphology in the X-rays and gamma-rays suggests that this process occurs with an efficiency that depends upon the inclination angle between the shock normal and the large-scale magnetic field in which the shock propagates. This interpretation is additionally supported by recent particle-in-cell simulations that show how ions are not injected if the shock is more oblique than ∼45°. These shocks provide an excellent test bench for the process of reacceleration at the same shock: non-thermal seed particles that are reached by the shock front are automatically injected and accelerated. This process was recently discussed as a possible reason for some anomalous behaviour of the spectra of secondary cosmic ray nuclei. Here, we discuss how gamma-ray observations of selected supernova remnants can provide us with precious information about this process and lead us to a better assessment of particle diffusive shock reacceleration for other observables in cosmic ray physics.


Author(s):  
Patrick Slane ◽  
Andrei Bykov ◽  
Donald C. Ellison ◽  
Gloria Dubner ◽  
Daniel Castro

2021 ◽  
Vol 502 (1) ◽  
pp. 472-477
Author(s):  
M Araya ◽  
C Herrera

ABSTRACT CTB 80 (G69.0+2.7) is a relatively old (50–80 kyr) supernova remnant (SNR) with a complex radio morphology showing three extended radio arms and a radio and X-ray nebula near the location of the pulsar PSR B1951+32. We report on a study of the GeV emission in the region of CTB 80 with Fermi-Large Area Telescope data. An extended source with a size of 1.3°, matching the size of the infrared shell associated to the SNR, was discovered. The GeV emission, detected up to an energy of ∼20 GeV, is more significant at the location of the northern radio arm where previous observations imply that the SNR shock is interacting with ambient material. Both hadronic and leptonic scenarios can reproduce the multiwavelength data reasonably well. The hadronic cosmic ray energy density required is considerably larger than the local Galactic value and the gamma-ray leptonic emission is mainly due to bremsstrahlung interactions. We conclude that GeV particles are still trapped or accelerated by the SNR producing the observed high-energy emission when interacting with ambient material.


2019 ◽  
Vol 621 ◽  
pp. A70 ◽  
Author(s):  
Fang-Kun Peng ◽  
Shao-Qiang Xi ◽  
Xiang-Yu Wang ◽  
Qi-Jun Zhi ◽  
Di Li

Star-forming regions on different scales, such as giant molecular clouds in our Galaxy and star-forming galaxies, emit GeV gamma-rays. These are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. It has recently been shown that the gamma-ray luminosity (Lγ) of star-forming galaxies is well correlated with their star formation rates (SFR). We investigated Fermi data of eight Galactic molecular clouds in the Gould belt and found that molecular clouds do not follow the Lγ −SFR correlation of star-forming galaxies. We also compared the scaling relations of gamma-ray luminosity, SFR, and the gas mass for molecular clouds and star-forming galaxies. Using a multiple-variable regression analysis, we found different dependences of gamma-ray emission on SFR or mass for molecular clouds and star-forming galaxies. This suggests that different mechanisms may govern the production of gamma-rays in these two types of sources. Specifically, the strong dependence on mass supports that gamma-ray emission of molecular clouds primarily comes from passive interaction by diffuse Galactic CRs, whereas the strong dependence on SFR supports that gamma-ray emission of star-forming galaxies originates from CRs that are accelerated by local active sources.


2009 ◽  
Vol 18 (10) ◽  
pp. 1627-1631 ◽  
Author(s):  
◽  
WILFRIED DOMAINKO ◽  
DALIBOR NEDBAL ◽  
JAMES A. HINTON ◽  
OLIVIER MARTINEAU-HUYNH

Clusters of galaxies are believed to contain a significant population of cosmic rays. From the radio and probably hard X-ray bands it is known that clusters are the spatially most extended emitters of non-thermal radiation in the Universe. Due to their content of cosmic rays, galaxy clusters are also potential sources of VHE (> 100 GeV) gamma rays. Recently, the massive, nearby cluster Abell 85 has been observed with the H.E.S.S. experiment in VHE gamma rays with a very deep exposure as part of an ongoing campaign. No significant gamma-ray signal has been found at the position of the cluster. The non-detection of this object with H.E.S.S. constrains the total energy of cosmic rays in this system. For a hard spectral index of the cosmic rays of -2.1 and if the cosmic-ray energy density follows the large scale gas density profile, the limit on the fraction of energy in these non-thermal particles with respect to the total thermal energy of the intra-cluster medium is 8% for this particular cluster. This value is at the lower bounds of model predictions.


Sign in / Sign up

Export Citation Format

Share Document