scholarly journals The influence of particle size of Enogen Feed corn and conventional yellow dent corn on nursery and finishing pig performance, carcass characteristics and stomach morphology

Author(s):  
Hadley R Williams ◽  
Mike D Tokach ◽  
Jason C Woodworth ◽  
Joel M DeRouchey ◽  
Robert D Goodband ◽  
...  

Abstract Enogen Feed corn is a variety developed by Syngenta Seeds (Downers Grove, IL) that has been genetically modified to contain an α-amylase enzyme trait (SYT-EFC). Originally, Enogen feed corn was developed for the ethanol industry due to its reduction in viscosity of the corn mash, thus eliminating the need to add a liquid form of the α-amylase enzyme. However, there is potential application for Enogen Feed corn to be used in livestock diets due to the increase in α-amylase enzyme potential to increase starch digestibility. A more common method of increasing starch digestibility in corn is to finely grind it to reduce particle size. This increases the surface area and allows for greater interaction with digestive enzymes. We hypothesized that pigs fed Enogen feed corn potentially could achieve similar gain:feed ratio (G:F) at larger particle sizes than conventional corn because of the differences in starch digestibility. In Exp. 1, a total of 360 pigs (DNA 200 × 400, Columbus, NE; initially 6.6 ± 0.1 kg BW) were used with 5 pigs per pen and 12 pens per treatment. Treatments were arranged in a 2 × 3 factorial with main effects of corn source (Enogen Feed corn or conventional yellow dent corn) and ground corn particle size (300, 600, or 900 µm). Overall, there was a corn source × particle size interaction (linear, P = 0.027) for G:F. There was no effect due to particle size when pigs were fed conventional yellow dent corn, but in pigs fed Enogen Feed corn, G:F increased with decreasing particle size. Neither corn source nor particle size affected (P > 0.05) overall average daily gain (ADG) or average daily feed intake (ADFI). In Exp. 2, a total of 323 pigs (241 × 600; DNA, Columbus, NE; initially 50.0 ± 1.3 kg) were used with 9 pigs per pen and 6 pens per treatment. Treatments were identical as Exp. 1. Overall, corn source had no effect on finishing pig ADG, ADFI or G:F. For corn particle size, ADG and G:F increased (linear, P < 0.014) and ADFI decreased (P = 0.043) as particle size decreased. For stomach morphology, there was a tendency for a corn source × particle size interaction (P = 0.055) for keratinization score with keratinization increasing linearly (P = 0.001) as particle size of the corn decreased for yellow dent corn with no change in keratinization score as particle size decreased for Enogen Feed corn. In summary, reducing corn particle size improved G:F with no major differences observed between corn sources for overall pig performance.

2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 75-76
Author(s):  
Hadley Williams ◽  
Mike D Tokach ◽  
Jason C Woodworth ◽  
Robert D Goodband ◽  
Joel M DeRouchey ◽  
...  

Abstract Two studies evaluated the effect of particle size of Enogen® Feed corn (Syngenta Seeds, LLC, Downers Grove, IL) and conventional yellow dent corn on nursery and finishing pig performance, carcass characteristics and stomach morphology. In Exp. 1, 360 nursery pigs (DNA 200×400, Columbus, NE; initially 6.6±0.1 kg BW) were used with 5 pigs per pen and 12 pens per treatment. Treatments were arranged in a 2×3 factorial with main effects of corn source (Enogen Feed corn or conventional yellow dent corn) and ground corn particle size (300, 600, or 900 µm). Overall, there was a corn source×particle size interaction (linear, P = 0.027) for G:F ratio. There was no difference due to particle size when pigs were fed conventional yellow dent corn, but in pigs fed Enogen Feed corn, G:F increased with decreasing particle size. Neither corn source nor particle size affected (P > 0.05) ADG or ADFI. In Exp. 2, 323 finishing pigs (241′600; DNA, Columbus, NE; initially 50.0±1.3 kg) were used with 8 or 9 pigs per pen and 6 pens per treatment. Treatments were arranged identical to Exp. 1. Overall, corn source did not elicit differences in ADG, ADFI or G:F (P > 0.05). For corn particle size, ADG and G:F increased (linear, P ≤ 0.014) and ADFI decreased (P = 0.043) as particle size decreased. For carcass characteristics, there was a tendency (linear, P = 0.093) for increased HCW and increased (linear, P = 0.023) carcass yield as corn particle size decreased. For stomach morphology, there was a tendency for a corn source×particle size interaction (P = 0.055) for keratinization score with keratinization increasing linearly (P = 0.001) as particle size decreased for yellow dent corn with no change in keratinization score as particle size decreased for Enogen Feed corn. In summary, reducing corn particle size improved G:F with no major differences observed between corn sources for overall pig performance.


Author(s):  
Hadley R Williams ◽  
Mike D Tokach ◽  
Chad B Paulk ◽  
Jason C Woodworth ◽  
Joel M DeRouchey ◽  
...  

Abstract Enogen Feed corn is a variety developed by Syngenta Seeds (Downers Grove, IL) that has been genetically modified to contain an α-amylase enzyme trait (SYT-EFC). Originally, Enogen feed corn was developed for the ethanol industry, due to its properties for reducing the viscosity of its corn mash. There is potential application for Enogen Feed corn to be used in livestock diets due to the potential for the increase in α-amylase enzyme to increase the starch digestibility. Because of this, it may be possible to increase particle size of ground Enogen Feed corn and maintain the same starch digestibility as finely ground conventional yellow dent corn. Therefore, our hypothesis was that an interaction between corn source and particle size would exist, such that performance of sows fed fine ground conventional yellow dent corn would be similar to sows fed coarse ground Enogen Feed corn. A total of 107 sows (Line 241; DNA, Columbus, NE) across 4 batch farrowing groups were used to evaluate sow and litter performance. Treatments were arranged in a 2 × 2 factorial with main effects of corn source (Enogen Feed corn or conventional yellow dent corn) and ground corn particle size (600 or 900 µm). From farrowing to weaning, there was a tendency for a corn source × particle size interaction (P = 0.065) in sow body weight change. Sows fed 900 µm Enogen Feed corn had decreased body weight loss compared to sows fed other treatments which were similar in weight loss. For sow ADFI from farrowing to weaning, there was a corn source × particle size interaction (P = 0.048) with sows fed 900 µm conventional yellow dent corn having lower feed intake than the sows fed 600 µm conventional yellow dent corn, whereas sows fed 900 µm Enogen Feed corn had greater feed intake compared to the sows fed 600 µm Enogen Feed corn. There was a tendency for a particle size main effect (P < 0.10) for litter ADG and total litter gain, with sows fed corn ground to 600 µm having increased litter ADG and total litter gain compared to sows fed corn ground to 900 µm. In summary, there were few differences in sow or litter characteristics among those fed Enogen Feed corn or conventional yellow dent corn. Reducing particle size of both corn sources tended to increase litter ADG and weaning weights.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 71-71
Author(s):  
Hadley Williams ◽  
Mike D Tokach ◽  
Jason C Woodworth ◽  
Robert D Goodband ◽  
Joel M DeRouchey ◽  
...  

Abstract Previous research has indicated that starch gelatinization during the pelleting process is greater for Enogen® Feed corn compared to conventional yellow dent corn. Increasing starch gelatinization in the pellet increases the starch digestibility in the pig, which potentially leads to increased growth rate. Therefore, the objective of this study was to determine the effects of feeding Enogen Feed corn in meal or pellet form on finishing pig growth performance and carcass characteristics. A total of 288 pigs (53.0 ± 0.5 kg) were used with 8 pigs/pen and 9 pens/treatment in a 72-d study. Treatments were arranged in a 2×2 factorial with main effects of corn source (Enogen Feed corn or conventional yellow dent corn) and diet form (meal or pellet). Main effects of corn source and diet form as well as their interactions were tested. Pelleting parameters were established with a target conditioner temperature of 82.2°C and corn moisture of 13 to 14%. When pelleting the diets, the conditioning temperature for conventional yellow dent corn averaged 68.4°C and Enogen Feed corn averaged 67.7°C. The hot pellet temperature for conventional yellow dent corn averaged 75.1°C and 75.8°C for Enogen feed corn. For overall performance (d 0 to 72), no interactions between corn source and diet form were observed (P > 0.05). There was a tendency (P < 0.10) for slightly improved average daily gain (ADG) and gain:feed ratio (G:F) for pigs fed conventional yellow dent corn compared to those fed Enogen Feed corn. Pigs fed pelleted diets had increased (P < 0.001) ADG, G:F, and hot carcass weight compared to pigs fed meal diets. In summary, feeding pelleted diets to finishing pigs increased ADG and G:F compared to those fed meal-based diets. There were no major differences observed between corn sources or interactions between corn source and diet form on growth performance.


Author(s):  
Hadley R Williams ◽  
Mike D Tokach ◽  
Jason C Woodworth ◽  
Joel M DeRouchey ◽  
Robert D Goodband ◽  
...  

Abstract Genetic modification of corn has enhanced the use of different corn hybrids in animal agriculture. Enogen Feed corn, developed by Syngenta Seeds (Downers Grove, IL), has potential for use in livestock diets due to increase α-amylase enzyme in the corn thus improving starch digestibility. In addition, the pelleting process also increases starch gelatinization which increases its digestibility by the pig, increasing growth rate and improving feed efficiency. Therefore, pelleting Enogen Feed corn might prove to provide a greater response in growth performance than conventional yellow dent corn. Thus, the objective of this experiment was to determine the effects of corn source and diet form on growth performance and carcass characteristics of finishing pigs. A total of 288 pigs (53.0 ± 0.5 kg) were used with 8 pigs per pen and 9 pens per treatment in a 72-d study. Treatments were arranged in a 2 × 2 factorial with main effects of corn source (Enogen Feed corn or conventional yellow dent corn) and diet form (meal or pellet). For overall (d 0 to 72) performance, no interactions between corn source and diet form were observed. There was a tendency (P < 0.10) for slightly improved average daily gain (ADG) and gain:feed ratio (G:F) for pigs fed conventional yellow dent corn compared to those fed Enogen Feed corn. For feed form, pigs fed pelleted diets had increased (P < 0.001) ADG and G:F compared to pigs fed meal diets. For carcass characteristics, pigs fed pelleted diets had increased hot carcass weight compared to pigs fed meal diets (P < 0.001). In summary, feeding pelleted diets to finishing pigs increased ADG and improved feed efficiency compared to those fed meal-based diets. There were no major differences between observed corn sources or interactions between corn source and diet form on growth performance.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 182-183
Author(s):  
Hadley Williams ◽  
Mike D Tokach ◽  
Jason C Woodworth ◽  
Robert D Goodband ◽  
Joel M DeRouchey ◽  
...  

Abstract A total of 107 sows (Line 241; DNA, Columbus, NE) across 4 batch farrowing groups were used to evaluate the effects of corn source and particle size on sow and litter performance. Treatments were arranged in a 2×2 factorial with main effects of corn source (Enogen® Feed corn (Syngenta Seeds, Downers Grove, IL) or conventional yellow dent corn) and ground corn particle size (600 or 900 µm). Sows were blocked by parity and BW upon arrival to the farrowing house. There were approximately 27 sows per treatment, sow was considered the experimental unit, dietary treatment was a fixed effect, and sow group and block were used as random effects. Main effects of corn source and particle size as well as their interactions were tested. From farrowing to weaning, there was a tendency for a source×particle size interaction (P=0.065) for sow BW change. Sows fed 900 µm Enogen Feed corn had decreased BW loss compared to sows fed other treatments which were similar in BW loss. There was a source×particle size interaction (P=0.048) for lactation ADFI with sows fed 900 µm conventional yellow dent corn having lower feed intake than the sows fed 600 µm conventional yellow dent corn, whereas sows fed 900 µm Enogen Feed corn had greater feed intake compared to the sows fed 600 µm Enogen Feed corn. There was a tendency for a particle size main effect (P<0.10) for litter ADG (2,849 vs 2,635 g/d) and total litter gain (45.7 vs 42.3 kg), with sows fed corn ground to 600 µm having increased litter ADG and total litter gain compared to sows fed corn ground to 900 µm. In summary, there were few differences in sow or litter characteristics among corn sources. Reducing particle size of both corn sources tended to increase litter ADG and weaning weights.


Author(s):  
H. R. Williams ◽  
M. D. Tokach ◽  
J. C. Woodworth ◽  
R. D. Goodband ◽  
J. M. DeRouchey ◽  
...  

Author(s):  
Hayden E Williams ◽  
Brittany Carrender ◽  
Cierra D Roubicek ◽  
Ryan Maurer ◽  
Joel M DeRouchey ◽  
...  

Abstract Two experiments were conducted to evaluate the effects of Fe injection timing after birth on suckling and subsequent nursery and growing-finishing pig performance. The injectable Fe source used in both experiments was GleptoForte (Ceva Animal Health, LLC., Lenexa, KS). GleptoForte contains gleptoferron which is a Fe macro-molecule complex. In Exp. 1, a total of 324 newborn pigs [DNA 241 × 600, initially 1.6 ± 0.04 kg body weight (BW)] within 27 litters were used. Two days after birth, all piglets were weighed, and six barrows and six gilts per litter were allotted to 1 of 6 treatments consisting of no Fe injection or 200 mg of injectable Fe provided in a single injection on d 2, 4, 6, 8, or 10 of age. Pigs were weaned (~21 d of age) and allotted to nursery pens with all pigs in each pen having received the same Fe treatment. In Exp. 2, a total of 1,892 newborn pigs (PIC 359 × C40; initially 1.5 ± 0.02 kg BW) within 172 litters were used. One day after birth, piglets were weighed, and 11 pigs within each litter were allotted to 1 of 6 treatments consisting of no Fe injection or 200 mg of injectable Fe provided on d 1, 3, 5, or 7 of age, or 200 mg on d 1 plus 200 mg on d 12 of age. Pigs were weaned (19 d of age) and placed in a commercial wean-to-finish facility in a total of 15 pens with equal representation of treatments in each pen. In both experiments, not providing an Fe injection after birth decreased (P < 0.05) preweaning average daily gain (ADG), weaning weight, and hemoglobin and hematocrit values compared to all other treatments. In Exp. 1, increasing the age that piglets received an Fe injection until 4 or 6 d after birth provided marginal evidence for an improvement (quadratic; P = 0.070) in preweaning ADG. For the nursery period, increasing the age that piglets received an Fe injection improved (quadratic; P = 0.013) d 80 BW, but there was no evidence of a difference (P > 0.10) in d 173 BW at the end of the grow-finish period. In Exp. 2, increasing the age that piglets received a 200 mg Fe injection showed no evidence of difference (P > 0.10) for subsequent nursery and growing-finishing ADG. In both experiments, hemoglobin and hematocrit values were decreased (linear; P < 0.05) at weaning with increasing age when pigs received an Fe injection. These experiments suggest that providing a 200 mg Fe injection within 7 d after farrowing is sufficient for optimizing preweaning and subsequent growth performance.


Author(s):  
Jeremiah E Nemechek ◽  
Michael D Tokach ◽  
Kyle F Coble ◽  
Joel M DeRouchey ◽  
Robert D Goodband ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document