scholarly journals Identification of Symbiotically Defective Mutants of Lotus japonicus Affected in Infection Thread Growth

2006 ◽  
Vol 19 (12) ◽  
pp. 1444-1450 ◽  
Author(s):  
Fabien Lombardo ◽  
Anne B. Heckmann ◽  
Hiroki Miwa ◽  
Jillian A. Perry ◽  
Koji Yano ◽  
...  

During the symbiotic interaction between legumes and rhizobia, the host cell plasma membrane and associated plant cell wall invaginate to form a tunnel-like infection thread, a structure in which bacteria divide to reach the plant root cortex. We isolated four Lotus japonicus mutants that make infection pockets in root hairs but form very few infection threads after inoculation with Mesorhizobium loti. The few infection threads that did initiate in the mutants usually did not progress further than the root hair cell. These infection-thread deficient (itd) mutants were unaffected for early symbiotic responses such as calcium spiking, root hair deformation, and curling, as well as for the induction of cortical cell division and the arbuscular mycorrhizal symbiosis. Complementation tests and genetic mapping indicate that itd2 is allelic to Ljsym7, whereas the itd1, itd3, and itd4 mutations identified novel loci. Bacterial release into host cells did occur occasionally in the itd1, itd2, and itd3 mutants suggesting that some infections may succeed after a long period and that infection of nodule cells could occur normally if the few abnormal infection threads that were formed reached the appropriate nodule cells.

1982 ◽  
Vol 60 (2) ◽  
pp. 152-161 ◽  
Author(s):  
B. Gillian Turgeon ◽  
Wolfgang D. Bauer

The time course of early infection events in Glycine max following inoculation with Rhizobium japonicum is described. Bacteria became attached to epidermal cells and root hairs within minutes of inoculation. Marked root hair curling occurred within 12 h. Infection thread formation was visible at the light microscope level of resolution about 24 h after inoculation. Infections were observed in short, tightly curled root hairs. These root hairs had not yet emerged at the time of inoculation. Infection threads appeared to originate in pockets formed by contact of the cell wall of the curled root hair with itself. Infection threads in the hairs were multiple and (or) branched. By 48 h, the infection thread(s) had progressed to the base of the root hair but had not yet penetrated into the cortex. Increases in cortical cell cytoplasm and in mitotic division occurred in advance of the penetrating infection thread. A nodule meristem developed in the outer cortex next to the infected root hair by 4 days and was accompanied by cell division across the cortex.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1050
Author(s):  
Anna V. Tsyganova ◽  
Nicholas J. Brewin ◽  
Viktor E. Tsyganov

The intracellular infection thread initiated in a root hair cell is a unique structure associated with Rhizobium-legume symbiosis. It is characterized by inverted tip growth of the plant cell wall, resulting in a tunnel that allows invasion of host cells by bacteria during the formation of the nitrogen-fixing root nodule. Regulation of the plant-microbial interface is essential for infection thread growth. This involves targeted deposition of the cell wall and extracellular matrix and tight control of cell wall remodeling. This review describes the potential role of different actors such as transcription factors, receptors, and enzymes in the rearrangement of the plant-microbial interface and control of polar infection thread growth. It also focuses on the composition of the main polymers of the infection thread wall and matrix and the participation of reactive oxygen species (ROS) in the development of the infection thread. Mutant analysis has helped to gain insight into the development of host defense reactions. The available data raise many new questions about the structure, function, and development of infection threads.


2005 ◽  
Vol 18 (6) ◽  
pp. 533-538 ◽  
Author(s):  
M. C. Laus ◽  
A. A. N. van Brussel ◽  
J. W. Kijne

Infection and subsequent nodulation of legume host plants by the root nodule symbiote Rhizobium leguminosarum usually require attachment of the bacteria to root-hair tips. Bacterial cellulose fibrils have been shown to be involved in this attachment process but appeared not to be essential for successful nodulation. Detailed analysis of Vicia sativa root-hair infection by wild-type Rhizobium leguminosarum RBL5523 and its cellulose fibril-deficient celE mutant showed that wild-type bacteria infected elongated growing root hairs, whereas cellulose-deficient bacteria infected young emerging root hairs. Exopolysaccharide-deficient strains that retained the ability to produce cellulose fibrils could also infect elongated root hairs but infection thread colonization was defective. Cellulose-mediated agglutination of these bacteria in the root-hair curl appeared to prevent entry into the induced infection thread. Infection experiments with V. sativa roots and an extracellular polysaccharide (EPS)- and cellulose-deficient double mutant showed that cellulose-mediated agglutination of the EPS-deficient bacteria in the infection thread was now abolished and that infection thread colonization was partially restored. Interestingly, in this case, infection threads were initiated in root hairs that originated from the cortical cell layers of the root and not in epidermal root hairs. Apparently, surface polysaccharides of R. leguminosarum, such as cellulose fibrils, are determining factors for infection of different developmental stages of root hairs.


2000 ◽  
Vol 13 (10) ◽  
pp. 1109-1120 ◽  
Author(s):  
Paola Bonfante ◽  
Andrea Genre ◽  
Antonella Faccio ◽  
Isabella Martini ◽  
Leif Schauser ◽  
...  

The role of the Lotus japonicus LjSym4 gene during the symbiotic interaction with Mesorhizobium loti and arbuscular mycorrhizal (AM) fungi was analyzed with two mutant alleles conferring phenotypes of different strength. Ljsym4-1 and Ljsym4-2 mutants do not form nodules with M. loti.Normal root hair curling and infection threads are not observed, while a nodC-dependent deformation of root hair tips indicates that nodulation factors are still perceived by Ljsym4 mutants. Fungal infection attempts on the mutants generally abort within the epidermis, but Ljsym4-1 mutants allow rare, successful, infection events, leading to delayed arbuscule formation. On roots of mutants homozygous for the Ljsym4-2 allele, arbuscule formation was never observed upon inoculation with either of the two AM fungi, Glomus intraradices or Gigaspora margarita. The strategy of epidermal penetration by G. margarita was identical for Ljsym4-2 mutants and the parental line, with appressoria, hyphae growing between two epidermal cells, penetration of epidermal cells through their anticlinal wall. These observations define a novel, genetically controlled step in AM colonization. Although rhizobia penetrate the tip of root hairs and AM fungi access an entry site near the base of epidermal cells, the LjSym4 gene is necessary for the appropriate response of this cell type to both microsymbionts. We propose that LjSym4 is required for the initiation or coordinated expression of the host plant cell's accommodation program, allowing the passage of both microsymbionts through the epidermis layer.


2006 ◽  
Vol 19 (7) ◽  
pp. 801-810 ◽  
Author(s):  
Koji Yano ◽  
Myra L. Tansengco ◽  
Taihei Hio ◽  
Kuniko Higashi ◽  
Yoshikatsu Murooka ◽  
...  

Legume plants develop specialized root organs, the nodules, through a symbiotic interaction with rhizobia. The developmental process of nodulation is triggered by the bacterial microsymbiont but regulated systemically by the host legume plants. Using ethylmethane sulfonate mutagenesis as a tool to identify plant genes involved in symbiotic nodule development, we have isolated and analyzed five nodulation mutants, Ljsym74-3, Ljsym79-2, Ljsym79-3, Ljsym80, and Ljsym82, from the model legume Lotus japonicus. These mutants are defective in developing functional nodules and exhibit nitrogen starvation symptoms after inoculation with Mesorhizobium loti. Detailed observation revealed that infection thread development was aborted in these mutants and the nodules formed were devoid of infected cells. Mapping and complementation tests showed that Ljsym74-3, and Ljsym79-2 and Ljsym79-3, were allelic with reported mutants of L. japonicus, alb1 and crinkle, respectively. The Ljsym82 mutant is unique among the mutants because the infection thread was aborted early in its development. Ljsym74-3 and Ljsym80 were characterized as mutants with thick infection threads in short root hairs. Map-based cloning and molecular characterization of these genes will help us understand the genetic mechanism of infection thread development in L. japonicus.


2010 ◽  
Vol 23 (12) ◽  
pp. 1553-1562 ◽  
Author(s):  
Akira Miyahara ◽  
Jennifer Richens ◽  
Colby Starker ◽  
Giulia Morieri ◽  
Lucinda Smith ◽  
...  

Nitrogen-fixing symbioses of plants are often associated with bacterially infected nodules where nitrogen fixation occurs. The plant host facilitates bacterial infection with the formation of infection threads, unique structures associated with these symbioses, which are invaginations of the host cell with the capability of traversing cellular junctions. Here, we show that the infection thread shares mechanistic similarities to polar-growing cells, because the required for infection thread (RIT) locus of Medicago truncatula has roles in root-hair, trichome, and infection-thread growth. We show that RIT encodes the M. truncatula ortholog of NAP1, a component of the SCAR/WAVE (suppressor of cAMP receptor/WASP-family verprolin homologous protein) complex that regulates actin polymerization, through the activation of ARP2/3. NAP1 of Arabidopsis thaliana functions equivalently to the M. truncatula gene, indicating that the mode of action of NAP1 is functionally conserved across species and that legumes have not evolved a unique functionality for NAP1 during rhizobial colonization. This work highlights the surprising commonality between polar-growing cells and a polar-growing cellular intrusion and reveals important insights into the formation and maintenance of infection-thread development.


Development ◽  
2001 ◽  
Vol 128 (9) ◽  
pp. 1507-1518 ◽  
Author(s):  
R. Catoira ◽  
A.C. Timmers ◽  
F. Maillet ◽  
C. Galera ◽  
R.V. Penmetsa ◽  
...  

The symbiotic infection of the model legume Medicago truncatula by Sinorhizobium meliloti involves marked root hair curling, a stage where entrapment of the microsymbiont occurs in a chamber from which infection thread formation is initiated within the root hair. We have genetically dissected these early symbiotic interactions using both plant and rhizobial mutants and have identified a M. truncatula gene, HCL, which controls root hair curling. S. meliloti Nod factors, which are required for the infection process, induced wild-type epidermal nodulin gene expression and root hair deformation in hcl mutants, while Nod factor induction of cortical cell division foci was reduced compared to wild-type plants. Studies of the position of nuclei and of the microtubule cytoskeleton network of hcl mutants revealed that root hair, as well as cortical cells, were activated in response to S. meliloti. However, the asymmetric microtubule network that is typical of curled root hairs, did not form in the mutants, and activated cortical cells did not become polarised and did not exhibit the microtubular cytoplasmic bridges characteristic of the pre-infection threads induced by rhizobia in M. truncatula. These data suggest that hcl mutations alter the formation of signalling centres that normally provide positional information for the reorganisation of the microtubular cytoskeleton in epidermal and cortical cells.


1994 ◽  
Vol 21 (3) ◽  
pp. 311 ◽  
Author(s):  
J Plazinski ◽  
RW Ridge ◽  
IA Mckay ◽  
MA Djordjevic

Cloned DNA fragments coding for the nodDABC genes of Rhizobium leguminosarum biovar trifolii strain ANU843 were introduced into Rhizobium strains possessing Sym plasmid deletions. These strains were able to: (a) synthesise four butanol-soluble Nod metabolites; (b) affect the normal growth pattern of plant root hairs of a wide range of host and non-host legumes; and (c) induce many root outgrowths on Phaseolus plants. The four Nod metabolites produced by these strains were labelled by supplying cultures with 14C-acetate in the presence of a flavonoid inducer of nod gene expression. In contrast, more than ten Nod metabolites were synthesised by wild-type strains or constructed strains containing the full complement of R. leguminosarum biovar. trifolii nodulation and host specific nodulation genes. Strain ANU845 containing nodDABC did not induce infection threads or nodule initiation sites but distorted and curled cells in plant root hairs. However strain ANU845 induced root outgrowths on beans (Phaseolus vulgaris) that appeared to result from a proliferation of the epidermal tissue. Transfer of plasmids bearing nodDABC to various Gram-negative bacteria, Agrobacterium tumefaciens, Pseudomonas aeruginosa, Lignobacter sp., Azospirillum brasilense and Escherichia coli, and different non-nodulating mutant rhizobia conferred on these strains the ability to cause root-hair curling and distortions. Several strains induced root-hair curling on clover and a range of other non-host legumes. We suggest that the expression of nodDABC in a range of soil bacteria may extend or alter the effects of these soil bacteria on the roots of host plants.


2007 ◽  
Vol 20 (2) ◽  
pp. 129-137 ◽  
Author(s):  
Jeroen Den Herder ◽  
Celine Vanhee ◽  
Riet De Rycke ◽  
Viviana Corich ◽  
Marcelle Holsters ◽  
...  

Bacterial nodulation factors (NFs) are essential signaling molecules for the initiation of a nitrogen-fixing symbiosis in legumes. NFs are perceived by the plant and trigger both local and distant responses, such as curling of root hairs and cortical cell divisions. In addition to their requirement at the start, NFs are produced by bacteria that reside within infection threads. To analyze the role of NFs at later infection stages, several phases of nodulation were studied by detailed light and electron microscopy after coinoculation of adventitious root primordia of Sesbania rostrata with a mixture of Azorhizobium caulinodans mutants ORS571-V44 and ORS571-X15. These mutants are deficient in NF production or surface polysaccharide synthesis, respectively, but they can complement each other, resulting in functional nodules occupied by ORS571-V44. The lack of NFs within the infection threads was confirmed by the absence of expression of an early NF-induced marker, leghemoglobin 6 of S. rostrata. NF production within the infection threads is shown to be necessary for proper infection thread growth and for synchronization of nodule formation with bacterial invasion. However, local production of NFs by bacteria that are taken up by the plant cells at the stage of bacteroid formation is not required for correct symbiosome development.


Sign in / Sign up

Export Citation Format

Share Document