Plasmopara viticola causing downy mildew on Vitis davidii in Korea
Vitis davidii (Rom.Caill.) Foëx, commonly known as spine grape, is a deciduous climber native to China. Its fruits are consumed fresh or used to make wine in South and Central China. In recent years, spine grape has been cultivated in Korea. In July 2020, downy mildew was detected on spine grape vines in Jeongeup (35°42′17″N, 126°54′02″E), Korea, with a disease incidence of 70%. The symptoms appeared as yellowish, brownish, or reddish, vein-limited, poly-angular adaxial leaf spots, correspond to dense, white downy growth abaxially. A representative specimen was deposited in the Kunsan National University Herbarium (KSNUH679). Sporangiophores were tree-like, hyaline, mostly straight, and monopodially branched in orders of three to six; they measured (219.4–)273.2 to 435.1(–546.6) × (4.8–)6.7 to 9.0(–10.0) μm (n = 50). Ultimate branchlets were bi or trifurcate, straight to slightly curved, with truncate or, rarely, a swollen tip and measured 2.9 to 9.7 μm long and 0.8 to 2.5 μm wide at the base (n = 50). Sporangia were hyaline, ovoidal or lemon-shaped; they measured (16.8–)20.0 to 28.8(–34.2) × (11.4–)13.1 to 17.0(–20.1) μm with a length to width ratio of (1.28–)1.46 to 1.78(–2.07) (n = 50). This morphology was as described for Plasmopara viticola (Berk. & M. A. Curtis) Berl. & De Toni (Hall, 1989). Genomic DNA was extracted directly from infected V. davidii leaves. Three regions were PCR-amplified and sequenced: cox2 mtDNA with primers cox2F and cox2-RC4 (Choi et al., 2015), actin with primers pve04815-F and pve04815-R, and beta-tubulin with primers pvc389-F3 and pvc389-R4 (Rouxel et al., 2013). The resulting sequences were deposited in GenBank (accession nos. MT834527 for cox2, MT834525 for actin, and MT834526 for beta-tubulin). A BLASTn search revealed that the Korean sample was identical to P. viticola clade aestivalis originating from Vitis species: MK215072 for cox2 sequence, KY933800 for actin, and MK358393 for beta-tubulin. In all phylogenetic analyses of the three genes (cox2, actin, and beta-tubulin), KSNUH679 came out as phylogenetically place within P. viticola clade aestivalis, which has recently been reported on V. coignetiae and V. ficifolia var. sinuata in Korea (Kim et al., 2019). A pathogenicity test was performed twice by inoculating the leaves of 10 healthy spine grape plants with a sporangial suspension (~1 × 106 sporangia·mL-1) and incubating them in a growth chamber at 25 °C, 12-h day/night cycle, and 90% relative humidity; five non-inoculated plants served as controls. After two weeks, all inoculated plants developed typical downy mildew symptoms could be observed, whereas the controls remained symptomless. Morphology and molecular features confirmed the identity of the pathogen of spine grape to be P. viticola. To the best of our knowledge, this is the first report of downy mildew caused by P. viticola on V. davidii in Korea. Recently, downy mildew outbreaks caused by P. viticola have been recorded in spine grape plantations in southern China (Yi et al., 2019). Considering the potential of spine grape as a novel crop for Korea, P. viticola appears to represent a significant threat to this industry.