scholarly journals Zucchini yellow mosaic virus: Contact Transmission, Stability on Surfaces, and Inactivation with Disinfectants

Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 765-771 ◽  
Author(s):  
B. A. Coutts ◽  
M. A. Kehoe ◽  
R. A. C. Jones

In glasshouse experiments, Zucchini yellow mosaic virus (ZYMV) was transmitted from infected to healthy zucchini (Cucurbita pepo) plants by direct contact when leaves were rubbed against each other, crushed, or trampled, and, to a lesser extent, on ZYMV-contaminated blades. When sap from zucchini plants infected with three ZYMV isolates was kept at room temperature for up to 6 h, it infected healthy plants readily. Also, when sap from ZYMV-infected leaves was applied to seven surfaces (cotton, plastic, leather, metal, rubber vehicle tire, rubber-soled footwear, and human skin) and left for up to 48 h before the ZYMV-contaminated surface was rubbed onto healthy zucchini plants, ZYMV remained infective for 48 h on tire, 24 h on plastic and leather, and up to 6 h on cotton, metal, and footwear. On human skin, ZYMV remained infective for 5 min only. The effectiveness of 13 disinfectants at inactivating ZYMV was evaluated by adding them to sap from ZYMV-infected leaves which was then rubbed on to healthy zucchini plants. None of the plants became infected when nonfat dried milk (20%, wt/vol) or bleach (sodium hypochlorite at 42 g/liter, diluted 1:4) were used. When ZYMV-infected pumpkin leaves were trampled by footwear and then used to trample healthy plants, all plants became infected; however, when contaminated footwear was dipped in a footbath containing bleach (sodium hypochlorite at 42 g/liter, diluted 1:4) before trampling, none became infected. This study demonstrates that ZYMV can be transmitted by contact and highlights the need for on-farm hygiene practices (decontaminating tools, machinery, clothing, and so on) to be included in integrated disease management strategies for ZYMV in cucurbit crops.

Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 53
Author(s):  
Vivek Khanal ◽  
Harrington Wells ◽  
Akhtar Ali

Field information about viruses infecting crops is fundamental for understanding the severity of the effects they cause in plants. To determine the status of cucurbit viruses, surveys were conducted for three consecutive years (2016–2018) in different agricultural districts of Oklahoma. A total of 1331 leaf samples from >90 fields were randomly collected from both symptomatic and asymptomatic cucurbit plants across 11 counties. All samples were tested with the dot-immunobinding assay (DIBA) against the antisera of 10 known viruses. Samples infected with papaya ringspot virus (PRSV-W), watermelon mosaic virus (WMV), zucchini yellow mosaic virus (ZYMV), and cucurbit aphid-borne-yellows virus (CABYV) were also tested by RT-PCR. Of the 10 viruses, PRSV-W was the most widespread, with an overall prevalence of 59.1%, present in all 11 counties, followed by ZYMV (27.6%), in 10 counties, and WMV (20.7%), in seven counties, while the remaining viruses were present sporadically with low incidence. Approximately 42% of the infected samples were positive, with more than one virus indicating a high proportion of mixed infections. CABYV was detected for the first time in Oklahoma, and the phylogenetic analysis of the first complete genome sequence of a CABYV isolate (BL-4) from the US showed a close relationship with Asian isolates.


2003 ◽  
Vol 93 (12) ◽  
pp. 1478-1484 ◽  
Author(s):  
C. Desbiez ◽  
A. Gal-On ◽  
M. Girard ◽  
C. Wipf-Scheibel ◽  
H. Lecoq

Zucchini yellow mosaic virus (ZYMV, Potyvirus) is a very damaging cucurbit virus worldwide. Interspecific crosses with resistant Cucurbita moschata have led to the release of “resistant” zucchini squash (C. pepo) F1 hybrids. However, although the resistance is almost complete in C. moschata, the commercial C. pepo hybrids are only tolerant. ZYMV evolution toward increased aggressiveness on tolerant hybrids was observed in the field and was obtained experimentally. Sequence comparisons and recombination experiments revealed that a point mutation in the P3 protein of ZYMV was enough to induce tolerance breaking. Competition experiments were performed between quasi-isogenic wild-type, and aggressive variants of ZYMV distinguished by monoclonal antibodies. The aggressive mutants were more fit than wild-type strains in mixed infections of tolerant zucchini, but they presented a drastic fitness loss in mixed infections of susceptible zucchini or melon. Thus, the ability to induce severe symptoms in tolerant zucchini is related to a genetic load in susceptible zucchini, but also on other susceptible hosts. This represents the first quantitative study of the fitness cost associated with tolerance breaking for a plant virus. Thus, although easily broken, the tolerance might prove durable in some conditions if the aggressive variants are counterselected in susceptible crops.


Author(s):  
Tri Asmira Damayanti ◽  
Titah Nurjannah ◽  
Listihani Listihani ◽  
Sri Hendrastuti Hidayat ◽  
Suryo Wiyono

Author(s):  
M. Swathi ◽  
Neeta Gaur ◽  
Kamendra Singh

Background: Whitefly is one of the most destructive sucking pest in the tropical and subtropical regions of the world and causing significant crop losses directly by sucking sap from the plants and indirectly through the transmission of viral diseases specifically caused by the genus Begomovirus. The Begomovirus species viz., Mungbean yellow mosaic India virus (MYMIV) and Mungbean yellow mosaic virus (MYMV) are causing yellow mosaic virus disease in soybean, which is transmitted by whiteflies. The disease accounts to 30-70 per cent yield loss and increases up to 80 - 100 per cent during severe incidence. Hence, there is a need for development of integrated pest management strategies against disease and whiteflies, for this the knowledge on virus-vector relationship is required. But, the studies on biological relationship of yellow mosaic virus disease and whitefly in soybean are scarce. At this juncture, considering the importance of disease in soybean, the present investigation was carried out to know the virus -vector relationship of the YMV and whitefly in soybean.Methods: The experiment on virus-vector relationship of yellow mosaic virus and whitefly in soybean was conducted at Department of Entomology, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand during 2016-17. The data on number of whiteflies per plant, acquisition and inoculation access feeding period and pre and post starvation period required for effective transmission of virus was recorded.Result: A single viruliferous whitefly was able to transmit virus and ten viruliferous whiteflies per plant were required for cent per cent transmission of virus. The minimum acquisition access and inoculation access feeding periods required for virus transmission was 0.25h (15 min) each; while the 100 per cent virus transmission was recorded with acquisition and inoculation period of 12h, each. The per cent transmission was increased with the increase of acquisition and inoculation periods. The rate of transmission was positively correlated with pre-acquisition starvation period and negatively correlated with post- acquisition starvation period.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1326-1336 ◽  
Author(s):  
Solomon Maina ◽  
Martin J. Barbetti ◽  
Owain R. Edwards ◽  
David Minemba ◽  
Michael W. Areke ◽  
...  

Zucchini yellow mosaic virus (ZYMV) isolates were obtained in Papua New Guinea (PNG) from cucumber (Cucumis sativus) or pumpkin (Cucurbita spp.) plants showing mosaic symptoms growing at Kongop in the Mount Hagen District, Western Highlands Province, or Zage in the Goroka District, Eastern Highlands Province. The samples were blotted onto FTA cards, which were sent to Australia, where they were subjected to high-throughput sequencing. When the coding regions of the nine new ZYMV genomic sequences found were compared with those of 64 other ZYMV sequences from elsewhere, they grouped together, forming new minor phylogroup VII within ZYMV’s major phylogroup A. Genetic connectivity was lacking between ZYMV genomic sequences from PNG and its neighboring countries, Australia and East Timor; the closest match between a PNG and any other genomic sequence was a 92.8% nucleotide identity with a sequence in major phylogroup A’s minor phylogroup VI from Japan. When the RDP5.2 recombination analysis program was used to compare 66 ZYMV sequences, evidence was obtained of 30 firm recombination events involving 41 sequences, and all isolates from PNG were recombinants. There were 21 sequences without recombination events in major phylogroup A, whereas there were only 4 such sequences within major phylogroup B. ZYMV’s P1, Cl, N1a-Pro, P3, CP, and NIb regions contained the highest evidence of recombination breakpoints. Following removal of recombinant sequences, seven minor phylogroups were absent (I, III, IV, V, VI, VII, and VIII), leaving only minor phylogroups II and IX. By contrast, when a phylogenetic tree was constructed using recombinant sequences with their recombinationally derived tracts removed before analysis, five previous minor phylogroups remained unchanged within major phylogroup A (II, III, IV, V, and VII) while four formed two new merged phylogroups (I/VI and VIII/IX). Absence of genetic connectivity between PNG, Australian, and East Timorese ZYMV sequences, and the 92.8% nucleotide identity between a PNG sequence and the closest sequence from elsewhere, suggest that a single introduction may have occurred followed by subsequent evolution to adapt to the PNG environment. The need for enhanced biosecurity measures to protect against potentially damaging virus movements crossing the seas separating neighboring countries in this region of the world is discussed.


2009 ◽  
Vol 35 (3) ◽  
pp. 223-225 ◽  
Author(s):  
José Segundo Giampan ◽  
Jorge Alberto Marques Rezende ◽  
Sônia Maria De Stefano Piedade

O ZLCV é um tospovírus encontrado com freqüência causando severos danos em cucurbitáceas. Nesse trabalho avaliaram-se os danos causados pelo ZLCV em abobrinha de moita 'Caserta', em campo na ESALQ/USP, Piracicaba-SP, onde esse vírus é freqüente. Plantas obtidas pela semeadura direta foram monitoradas periodicamente quanto à infecção pelo ZLCV por meio dos sintomas e por PTA-ELISA. Monitorou-se ainda a contaminação com Papaya ringspot virus - type W e Zucchini yellow mosaic virus, desconsiderando a produção dessas plantas. As plantas foram agrupadas em função da época de aparecimento dos sintomas do ZLCV, avaliando a produção de frutos comerciais (FC) e não comerciais (FNC) de cada grupo e comparando com a de plantas que permaneceram sem sintomas até o final do experimento. As plantas que apresentaram sintomas até os 23 dias após a emergência (DAE) não produziram qualquer tipo de frutos. FC foram colhidos de plantas que apresentaram sintomas a partir dos 42 DAE. Mesmo assim, houve redução de 78,5 % na produção de FC. Plantas que mostraram sintomas por ocasião da última colheita (55 DAE) apresentaram redução na produção de FC de 9,6 %. A infecção com o ZLCV até o início da frutificação inviabiliza a produção de FC de abobrinha de moita 'Caserta'.


2018 ◽  
Vol 100 (2) ◽  
pp. 333-333 ◽  
Author(s):  
Nam-Yeon Kim ◽  
Hyo-Jeong Lee ◽  
Mi-Ri Park ◽  
Jin-Sung Hong ◽  
Rae-Dong Jeong

Author(s):  
Heba A. Mahfouze ◽  
Sherin A. Mahfouze ◽  
Mahmoud E. S. Ottai

Squash or cucurbit (Cucurbita pepo) is one of the famous and important vegetable plants in most world countries. The squash is infected by the critical Zucchini yellow mosaic virus (ZYMV) in Egypt. Though pesticides can protect the plants of pest infections, there are no effective compounds that can be applied as virucides. In this work, the effects of aqueous extracts from Jasmina montana and Artemisia herba-alba on ZYMV infection in the squash plants were examined. In addition, SDS-PAGE protein patterns and enzyme activities were evaluated and induction of resistance by plant elicitors against ZYMV was studied The results observed that using of the aqueous extracts from A. herba-alba or J. montana extracts prior to ZYMV inoculation recorded 100% inhibition of virus infection. Also, complete inhibition was obtained by treatment of A. herba-alba extract with the virus inoculum led to destroy the virus particles due to presence of the effective compounds (terpens, phenolics and the essential oils) in the plant extract. SDS-PAGE protein profiles and enzyme activities were studied in treated and untreated plants. Genomic DNA variation was studied using random amplified polymorphic DNA (RAPD) and Inter-simple sequence repeat (ISSR) loci. The alterations in RAPD and ISSR assays of representative squash plants can be applied to comprehend of induced systemic resistance. These inducers stimulated resistance in the squash plants. Therefore, elicitors should be taken into consideration in the breeding programs for ZYMV control.


Sign in / Sign up

Export Citation Format

Share Document