Genetic Diversity, Identification and Utilization of Novel Genetic Resources for Resistance to Meloidogyne incognita in Mulberry (Morus spp.)
Mulberry (Morus spp.) is an important crop in the sericulture industry as the leaves constitute the primary feed for the silkworm. The availability of diverse genetic sources of resistance to root- knot nematode (RKN; Meloidogyne spp.) are very scanty and therefore, a set of 415 varied exotic and indigenous germplasm accessions were screened under glasshouse conditions. Twenty one accessions were identified as highly resistant and 48 were resistant, the highest numbers of highly resistant/resistant accessions were found in Morus alba. Further, thirty accessions based on rooting ability were evaluated for field resistance at four different locations with infested soil. Finally, eight germplasm accessions; BR-8, Karanjtoli-1, Hosur-C8, Nagalur Estate, Tippu, Calabresa, Thai Pecah and SRDC-3 were identified as potential genetic sources in RKN resistance breeding programs or as resistant rootstock for the establishment of mulberry gardens. Sixteen SSR markers analyzed among the 77 resistant and susceptible accessions, generated 55 alleles, ranging from 2 to 5 with an average of 3.43 alleles per locus. Principle coordinate analysis grouped the accessions on the basis of RKN susceptible and resistant to a greater extent. The RKN susceptible accessions exhibited higher variability as compared to resistant accessions and they were more dispersed. Analysis of molecular variance showed that maximum molecular variance (78%) within the population and 22% between populations. Results of this study indicate that SSR markers are reliable for assessing genetic variability among the RKN resistant and susceptible mulberry accessions.