scholarly journals Compatible and Incompatible Interactions in Wheat Involving the Bt-10 Gene for Resistance to Tilletia tritici, the Common Bunt Pathogen

2007 ◽  
Vol 97 (11) ◽  
pp. 1397-1405 ◽  
Author(s):  
Denis A. Gaudet ◽  
Zhen-Xiang Lu ◽  
Frances Leggett ◽  
Bryan Puchalski ◽  
André Laroche

The infection of wheat lines Neepawa (susceptible), and its sib BW553 that is nearly isogenic for the Bt-10 resistance gene by differentially virulent races T1 and T27 of common bunt (Tilletia tritici), was followed for 21 days following seeding (dfs) using fluorescence and confocal microscopy. Spore germination was nonsynchronous and all spore stages including germination were observed 5 to 21 dfs. Initial host perception of pathogen invasion, based on autofluorescence in epidermal cells adjacent to the appressoria, was similar in both compatible and incompatible interactions, and occurred as early as 5 to 6 dfs. The total number of sites on a 1-cm segment of coleoptile adjacent to the seed that exhibited autofluorescence was similar in both the compatible and incompatible interactions and rose to a maximum of 35 to 40 per 1 cm length of coleoptile following 17 dfs, although new infection events were observed as late as 21 dfs. In the compatible interaction, the autofluorescence became more diffuse 10 to 12 dfs, emanating in all directions in association with fungal spread. In the incompatible interaction, autofluorescence remained restricted to a small area surrounding the penetration site. Two different reaction zones that extended further in tissues surrounding the penetration point in the incompatible interaction compared with the compatible interaction were identified. The accumulation of callose around invading fungal hyphae was observed during both the compatible and incompatible interactions from 8 to 21 dfs. While callose accumulation was more extensive and widespread in the incompatible interaction, it was clearly present in compatible interactions, particularly in treatments involving BW553. These results were confirmed by expression of callose synthase transcripts that were more abundant in BW553 than in Neepawa and were upregulated during pathogen infection in both compatible and incompatible interactions.

2012 ◽  
Vol 42 (Special Issue) ◽  
pp. 14-14
Author(s):  
D.A. Gaudet ◽  
F. Leggett ◽  
Z.-X. Lu ◽  
M. Frick ◽  
B. Puchalski ◽  
...  

see the full text


2012 ◽  
Vol 25 (7) ◽  
pp. 920-930 ◽  
Author(s):  
Lieceng Zhu ◽  
Xuming Liu ◽  
Haiyan Wang ◽  
Chitvan Khajuria ◽  
John C. Reese ◽  
...  

Hessian fly (HF) is a biotrophic insect that interacts with wheat on a gene-for-gene basis. We profiled changes in membrane lipids in two isogenic wheat lines: a susceptible line and its backcrossed offspring containing the resistance gene H13. Our results revealed a 32 to 45% reduction in total concentrations of 129 lipid species in resistant plants during incompatible interactions within 24 h after HF attack. A smaller and delayed response was observed in susceptible plants during compatible interactions. Microarray and real-time polymerase chain reaction analyses of 168 lipid-metabolism-related transcripts revealed that the abundance of many of these transcripts increased rapidly in resistant plants after HF attack but did not change in susceptible plants. In association with the rapid mobilization of membrane lipids, the concentrations of some fatty acids and 12-oxo-phytodienoic acid (OPDA) increased specifically in resistant plants. Exogenous application of OPDA increased mortality of HF larvae significantly. Collectively, our data, along with previously published results, indicate that the lipids were mobilized through lipolysis, producing free fatty acids, which were likely further converted into oxylipins and other defense molecules. Our results suggest that rapid mobilization of membrane lipids constitutes an important step for wheat to defend against HF attack.


2015 ◽  
Vol 105 (6) ◽  
pp. 728-737 ◽  
Author(s):  
X. Wang ◽  
B. D. McCallum ◽  
T. Fetch ◽  
G. Bakkeren ◽  
B. J. Saville

Race-specific resistance of wheat to Puccinia graminis f. sp. tritici is primarily posthaustorial and often involves the induction of a hypersensitive response (HR). The aim of this study was to investigate host defense responses induced in interactions between P. graminis f. sp. tritici races and wheat lines carrying different race-specific stem rust resistance (Sr) genes. In incompatible interactions between wheat lines carrying Sr36 in three genetic backgrounds (LMPG, Prelude, or W2691) and avirulent P. graminis f. sp. tritici races MCCFC or RCCDM, callose accumulated within 24 h in wheat guard cells contacted by a P. graminis f. sp. tritici appressorium, and P. graminis f. sp. tritici ingress was inhibited following appressorium formation. Accordingly, the expression of transcripts encoding a callose synthase increased in the incompatible interaction between LMPG-Sr36 and avirulent P. graminis f. sp. tritici race MCCFC. Furthermore, the inhibition of callose synthesis through the infiltration of 2-deoxy-D-glucose (DDG) increased the ability of P. graminis f. sp. tritici race MCCFC to infect LMPG-Sr36. A similar induction of callose deposition in wheat guard cells was also observed within 24 h after inoculation (hai) with avirulent P. graminis f. sp. tritici race HKCJC on LMPG-Sr5 plants. In contrast, this defense response was not induced in incompatible interactions involving Sr6, Sr24, or Sr30. Instead, the induction of an HR and cellular lignification were noted. The manifestation of the HR and cellular lignification was induced earlier (24 hai) and was more extensive in the resistance response mediated by Sr6 compared with those mediated by Sr24 or Sr30. These results indicate that the resistance mediated by Sr36 is similar to that mediated by Sr5 but different from those triggered by Sr6, Sr24, or Sr30. Resistance responses mediated by Sr5 and Sr36 are prehaustorial, and are a result of very rapid recognition of molecules derived from avirulent isolates of P. graminis f. sp. tritici, in contrast to the responses triggered in lines with Sr6, Sr24, and Sr30.


2020 ◽  
Author(s):  
Fan Zhang ◽  
Fan Zhang ◽  
Liyu Huang ◽  
Dan Zeng ◽  
Casiana Vera Cruz ◽  
...  

Abstract Background: Bacterial blight, which is caused by Xanthomonas oryzae pv. oryzae (Xoo), is a devastating rice disease worldwide. Rice introgression line H471, derived from the recurrent parent Huang-Hua-Zhan (HHZ) and the donor parent PSBRC28, exhibits broad-spectrum resistance to Xoo, including to the highly virulent Xoo strain PXO99A, whereas its parents are susceptible to PXO99A. To characterize the responses to Xoo, we compared the proteome profiles of the host and pathogen in the incompatible interaction (H471 inoculated with PXO99A) and the compatible interaction (HHZ inoculated with PXO99A).Results: In this study, a total of 374 rice differentially abundant proteins (DAPs) and 117 Xoo DAPs were detected in the comparison between H471 + PXO99A and HHZ + PXO99A. Most of the Xoo DAPs related to pathogen virulence, including the outer member proteins, type III secretion system proteins, TonB-dependent receptors, and transcription activator-like effectors, were less abundant in the incompatible interaction than in the compatible interaction. The rice DAPs were mainly involved in secondary metabolic processes, including phenylalanine metabolism and the biosynthesis of flavonoids and phenylpropanoids. Additionally, some DAPs involved in the phenolic phytoalexin and salicylic acid (SA) biosynthetic pathways accumulated much more in H471 than in HHZ after the inoculation with PXO99A, suggesting that phytoalexin and SA production was induced faster in H471 than in HHZ. Further analyses revealed that the SA content increased much more rapidly in H471 than in HHZ after the inoculation, suggesting that the SA signaling pathway was activated faster in the incompatible interaction than in the compatible interaction.Conclusions: Overall, our results indicate that during an incompatible interaction between H471 and PXO99A, rice plants prevent pathogen invasion and also initiate multi-component defense responses that inhibit disease development.


1999 ◽  
Vol 12 (6) ◽  
pp. 490-498 ◽  
Author(s):  
Ramamurthy Mahalingam ◽  
Gejiao Wang ◽  
Halina T. Knap

The cell wall acts as the first line of defense during pathogen invasion. Polygalacturonases (PGs) are a class of cell-wall-modifying enzymes with precise temporal and organ-specific expression. A 350-bp fragment with high homology to PGs was identified by differential display (DD) analysis of soybean cyst nematode (SCN) race 3 resistant PI 437654 and susceptible cultivar Essex. The fragment was strongly expressed in Essex, 2 days after inoculation (DAI). Complete coding sequences of two PG cDNAs, PG1 and PG2, were isolated by 3′ and 5′ rapid amplification of cDNA ends polymerase chain reaction (RACE PCR). PI 437654 and Essex had identical PG1 and PG2 sequences. A transversion from A to C created a PstI restriction site in the PG2 cDNA that was used to distinguish the two PG cDNAs by cleaved amplified polymorphic sequence (CAPS) analysis. A cDNA encoding a polygalacturonase-inhibitor protein (PGIP) that is 89% identical to the Phaseolus vulgaris PGIP was isolated from soybean roots by reverse transcription (RT)-PCR. Steady-state levels of PG and PGIP were investigated by RNA gel blot analysis in roots 1 to 5 DAI and in hypocotyls and leaves. Differences in the constitutive levels of PG mRNAs were observed in roots of different soybean genotypes. Steady-state levels of PG mRNAs were enhanced during compatible interactions with SCN and reduced in incompatible interactions and in mechanically wounded roots. Enhanced PGIP transcription was observed in response to mechanical wounding in both PI 437654 and Essex, but only in compatible interactions with SCN, suggesting uncoupling of PGIP functions in developmental and stress cues. Constitutive expression in incompatible interactions shows PGIP is not a factor in SCN resistance. Thus, the up-regulation of endogenous PG transcription in soybean roots early after SCN infection could facilitate successful parasitism by SCN.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Fan Zhang ◽  
Fan Zhang ◽  
Liyu Huang ◽  
Dan Zeng ◽  
Casiana Vera Cruz ◽  
...  

Abstract Background Bacterial blight, which is caused by Xanthomonas oryzae pv. oryzae (Xoo), is a devastating rice disease worldwide. Rice introgression line H471, derived from the recurrent parent Huang-Hua-Zhan (HHZ) and the donor parent PSBRC28, exhibits broad-spectrum resistance to Xoo, including to the highly virulent Xoo strain PXO99A, whereas its parents are susceptible to PXO99A. To characterize the responses to Xoo, we compared the proteome profiles of the host and pathogen in the incompatible interaction (H471 inoculated with PXO99A) and the compatible interaction (HHZ inoculated with PXO99A). Results In this study, a total of 374 rice differentially abundant proteins (DAPs) and 117 Xoo DAPs were detected in the comparison between H471 + PXO99A and HHZ + PXO99A. Most of the Xoo DAPs related to pathogen virulence, including the outer member proteins, type III secretion system proteins, TonB-dependent receptors, and transcription activator-like effectors, were less abundant in the incompatible interaction than in the compatible interaction. The rice DAPs were mainly involved in secondary metabolic processes, including phenylalanine metabolism and the biosynthesis of flavonoids and phenylpropanoids. Additionally, some DAPs involved in the phenolic phytoalexin and salicylic acid (SA) biosynthetic pathways accumulated much more in H471 than in HHZ after the inoculation with PXO99A, suggesting that phytoalexin and SA productions were induced faster in H471 than in HHZ. Further analyses revealed that the SA content increased much more rapidly in H471 than in HHZ after the inoculation, suggesting that the SA signaling pathway was activated faster in the incompatible interaction than in the compatible interaction. Conclusions Overall, our results indicate that during an incompatible interaction between H471 and PXO99A, rice plants prevent pathogen invasion and also initiate multi-component defense responses that inhibit disease development.


2020 ◽  
Author(s):  
Fan Zhang ◽  
Fan Zhang ◽  
Liyu Huang ◽  
Dan Zeng ◽  
Casiana Vera Cruz ◽  
...  

Abstract Background: Bacterial blight, which is caused by Xanthomonas oryzae pv. oryzae (Xoo), is a devastating rice disease worldwide. Rice introgression line H471, derived from the recurrent parent Huang-Hua-Zhan (HHZ) and the donor parent PSBRC28, exhibits broad-spectrum resistance to Xoo, including to the highly virulent Xoo strain PXO99A, whereas its parents are susceptible to PXO99A. To characterize the responses to Xoo, we compared the proteome profiles of the host and pathogen in the incompatible interaction (H471 inoculated with PXO99A) and the compatible interaction (HHZ inoculated with PXO99A).Results: In this study, a total of 374 rice differentially abundant proteins (DAPs) and 117 Xoo DAPs were detected in the comparison between H471 + PXO99A and HHZ + PXO99A. Most of the Xoo DAPs related to pathogen virulence, including the outer member proteins, type III secretion system proteins, TonB-dependent receptors, and transcription activator-like effectors, were less abundant in the incompatible interaction than in the compatible interaction. The rice DAPs were mainly involved in secondary metabolic processes, including phenylalanine metabolism and the biosynthesis of flavonoids and phenylpropanoids. Additionally, some DAPs involved in the phenolic phytoalexin and salicylic acid (SA) biosynthetic pathways accumulated much more in H471 than in HHZ after the inoculation with PXO99A, suggesting that phytoalexin and SA production was induced faster in H471 than in HHZ.Conclusions: Overall, our results indicate that during an incompatible interaction between H471 and PXO99A, rice plants prevent pathogen invasion and also initiate multi-component defense responses that inhibit disease development.


2012 ◽  
Vol 65 ◽  
pp. 297-297
Author(s):  
M. Denton-Giles ◽  
M.P. Cox ◽  
R.E. Bradshaw ◽  
P.P. Dijkwel

The hostspecific fungal pathogen Ciborinia camelliae is a significant pest of ornamental Camellia plants It is the causal agent of Camellia flower blight which has become rampant throughout New Zealand since the pathogens accidental introduction in the early 1990s This study aims to profile the infection of C camelliae in petals of resistant Camellia lutchuensis and susceptible Camellia japonica Camellia pitardii Nicky Crisp plants Petals were harvested from glasshousegrown plants and infected with fieldcollected fungal ascospores Microscopic analysis of the incompatible interaction at 24 hours post inoculation (hpi) revealed many hallmarks of nonhost resistance including papilla formation and H2O2 accumulation Localised cell death was also observed in epidermal cells in direct vicinity of ascospores In comparison the compatible interaction produced lesions by 30 hpi that completely enveloped the petal tissue by 72 hpi RNA was isolated from incompatible and compatible interactions at 48 hpi Deep sequencing of the mRNA resulted in a total of 340 million high quality cDNA reads Preliminary analysis of the compatible transcriptome identified the expression of 23 putative fungal virulence factors that have previously been characterised in other members of the Sclerotiniaceae


Sign in / Sign up

Export Citation Format

Share Document