scholarly journals Hippocampal Perfusion in a Mouse Model of Greater Large Artery Stiffness and Alzheimer’s Disease‐Related Transgenes

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Nicholas R. Winder ◽  
Grant D. Henson ◽  
Martin M. Pike ◽  
Ashley E. Walker
Author(s):  
Nicholas R Winder ◽  
Emily H Reeve ◽  
Ashley E Walker

There are no effective treatments available to halt or reverse the progression of age-related cognitive decline and Alzheimer's disease. Thus, there is an urgent need to understand the underlying mechanisms of disease etiology and progression in order to identify novel therapeutic targets. Age-related changes to vasculature, particularly increases in stiffness of the large elastic arteries, are now recognized as important contributors to brain aging. There is a growing body of evidence for an association between greater large artery stiffness and cognitive impairment among both healthy older adults and patients with Alzheimer's disease. However, studies in humans are limited to only correlative evidence while animal models allow researchers to explore the causative mechanisms linking arterial stiffness to neurocognitive dysfunction and disease. Recently, several rodent models of direct modulation of large artery stiffness and the consequent effects on the brain have been reported. Common outcomes among these models have emerged, including evidence that greater large artery stiffness causes cerebrovascular dysfunction associated with increased oxidative stress and inflammatory signaling. The purpose of this mini review is to highlight recent findings associating large artery stiffness with deleterious brain outcomes, with a specific focus on causative evidence obtained from animal models. We will also discuss the gaps in knowledge that remain in our understanding of how large artery stiffness affects brain function and disease outcomes.


2021 ◽  
Vol 2 ◽  
Author(s):  
Mackenzie N. Kehmeier ◽  
Ashley E. Walker

Two in every three Alzheimer’s disease diagnoses are females, calling attention to the need to understand sexual dimorphisms with aging and neurodegenerative disease progression. Dysfunction and damage to the vasculature with aging are strongly linked to Alzheimer’s disease. With aging there is an increase in stiffness of the large elastic arteries, and this stiffening is associated with cerebrovascular dysfunction and cognitive impairment. However, it is unclear how the deleterious effects of arterial stiffness may differ between females and males. While environmental, chromosomal, and sex hormone factors influence aging, there is evidence that the deficiency of estrogen post-menopause in females is a contributor to vascular aging and Alzheimer’s disease progression. The purpose of this mini review is to describe the recent developments in our understanding of sex differences in large artery stiffness, cerebrovascular dysfunction, and cognitive impairment, and their intricate relations. Furthermore, we will focus on the impact of the loss of estrogen post-menopause as a potential driving factor for these outcomes. Overall, a better understanding of how sex differences influence aging physiology is crucial to the prevention and treatment of neurodegenerative diseases.


Author(s):  
Alejandra Freire Fernández-Regatillo ◽  
María L. de Ceballos ◽  
Jesús Argente ◽  
Sonia Díaz Pacheco ◽  
Clara González Martínez

Sign in / Sign up

Export Citation Format

Share Document