scholarly journals The Mechanism for Type II Collagen in Modulating Osteochondral Differentiation of Mesenchymal Progenitor Cells

2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
Li‐Hsuan Chiu ◽  
Charng‐Bin Yang ◽  
Chia‐Lang Fang ◽  
Wen‐Fu T Lai ◽  
Yu‐Wei Wu ◽  
...  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Alessandro Pirosa ◽  
Karen L. Clark ◽  
Jian Tan ◽  
Shuting Yu ◽  
Yuanheng Yang ◽  
...  

Abstract Background Animal cell-based systems have been critical tools in understanding tissue development and physiology, but they are less successful in more practical tasks, such as predicting human toxicity to pharmacological or environmental factors, in which the congruence between in vitro and clinical outcomes lies on average between 50 and 60%. Emblematic of this problem is the high-density micromass culture of embryonic limb bud mesenchymal cells, derived from chick, mouse, or rat. While estimated predictive value of this model system in toxicological studies is relatively high, important failures prevent its use by international regulatory agencies for toxicity testing and policy development. A likely underlying reason for the poor predictive capacity of animal-based culture models is the small but significant physiological differences between species. This deficiency has inspired investigators to develop more organotypic, 3-dimensional culture system using human cells to model normal tissue development and physiology and assess pharmacological and environmental toxicity. Methods We have developed a modified, miniaturized micromass culture model using adult human bone marrow-derived mesenchymal progenitor cells (hBM-MPCs) that is amenable to moderate throughput and high content analysis to study chondrogenesis. The number of cells per culture was reduced, and a methacrylated gelatin (gelMA) overlay was incorporated to normalize the morphology of the cultures. Results These modified human cell-based micromass cultures demonstrated robust chondrogenesis, indicated by increased Alcian blue staining and immunodetectable production of collagen type II and aggrecan, and stage-specific chondrogenic gene expression. In addition, in cultures of hBM-MPCs transduced with a lentiviral collagen type II promoter-driven GFP reporter construct, levels of GFP reporter activity correlated well with changes in endogenous collagen type II transcript levels, indicating the feasibility of non-invasive monitoring of chondrogenesis. Conclusions The modified hBM-MPC micromass culture system described here represents a reproducible and controlled model for analyzing mechanisms of human skeletal development that may later be applied to pharmacological and environmental toxicity studies.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Jeong-Eun Huh ◽  
Yeon-Cheol Park ◽  
Byung-Kwan Seo ◽  
Jae-Dong Lee ◽  
Yong-Hyeon Baek ◽  
...  

We sought to determine the cartilage repair capacity of WIN-34B in the collagenase-induced osteoarthritis rabbit model and in progenitor cells from subchondral bone. The cartilage protective effect of WIN-34B was measured by clinical and histological scores, cartilage area, and proteoglycan and collagen contents in the collagenase-induced osteoarthritis rabbit model. The efficacy of chondrogenic differentiation of WIN-34B was assessed by expression of CD105, CD73, type II collagen, and aggrecanin vivoand was analyzed by the surface markers of progenitor cells, the mRNA levels of chondrogenic marker genes, and the level of proteoglycan, GAG, and type II collagenin vitro. Oral administration of WIN-34B significantly increased cartilage area, and this was associated with the recovery of proteoglycan and collagen content. Moreover, WIN-34B at 200 mg/kg significantly increased the expression of CD105, CD73, type II collagen, and aggrecan compared to the vehicle group. WIN-34B markedly enhanced the chondrogenic differentiation of CD105 and type II collagen in the progenitor cells from subchondral bone. Also, we confirmed that treatment with WIN-34B strongly increased the number of SH-2(CD105) cells and expression type II collagen in subchondral progenitor cells. Moreover, WIN-34B significantly increased proteoglycan, as measured by alcian blue staining; the mRNA level of type IIα1 collagen, cartilage link protein, and aggrecan; and the inhibition of cartilage matrix molecules, such as GAG and type II collagen, in IL-1β-treated progenitor cells. These findings suggest that WIN-34B could be a potential candidate for effective anti-osteoarthritic therapy with cartilage repair as well as cartilage protection via enhancement of chondrogenic differentiation in the collagenase-induced osteoarthritis rabbit model and progenitor cells from subchondral bone.


Author(s):  
Wen Wang ◽  
Shengnan Qin ◽  
Peiliang He ◽  
Wei Mao ◽  
Liang Chen ◽  
...  

ObjectiveFibrocartilage transition zone (FC) is difficult to regenerate after surgical re-attachment of tendon to bone. Here, we investigated whether type II collagen-sponges (CII-sponges) facilitated tendon stem/progenitor cells (TSPCs) to adopt chondrogenic phenotypes and further observed if this material could increase the FC areas in bone-tendon junction (BTJ) injury model.MethodsCII-sponges were made as we previously described. The appearance and pore structure of CII-sponges were photographed by camera and microscopies. The viability, proliferation, and differentiation of TSPCs were examined by LIVE/DEAD assay, alamarBlue, and PKH67 in vitro tracking. Subsequently, TSPCs were seeded in CII-sponges, Matrigel or monolayer, and induced under chondrogenic medium for 7 or 14 days before being harvested for qPCR or being transplanted into nude mice to examine the chondrogenesis of TSPCs. Lastly, partial patellectomy (PP) was applied to establish the BTJ injury model. CII-sponges were interposed between the patellar fragment and tendon, and histological examination was used to assess the FC regeneration at BTJ after surgery at 8 weeks.ResultsCII-sponges were like sponges with interconnected pores. TSPCs could adhere, proliferate, and differentiate in this CII-sponge up to 14 days at least. Both qPCR and immunostaining data showed that compared with TSPCs cultured in monolayer or Matrigel, cells in CII-sponges group adopted more chondrogenic phenotypes with an overall increase of chondrocyte-related genes and proteins. Furthermore, in PP injured model, much more new formed cartilage-like tissues could be observed in CII-sponges group, evidenced by a large amount of positive proteoglycan expression and typical oval or round chondrocytes in this area.ConclusionOur study showed that CII-sponges facilitated the TSPCs to differentiate toward chondrocytes and increased the area of FCs, which suggests that CII-sponges are meaningful for the reconstruction of FC at bone tendon junction. However, the link between the two phenomena requires further research and validation.


2005 ◽  
Vol 35 (2) ◽  
pp. 236-240 ◽  
Author(s):  
Daitaro Kurosaka ◽  
Jun Yasuda ◽  
Ken Yoshida ◽  
Chiho Yasuda ◽  
Yasuhiko Toyokawa ◽  
...  

1996 ◽  
Vol 09 (02) ◽  
pp. 60-5 ◽  
Author(s):  
N. Hope ◽  
P. Ghosh ◽  
S. Collier

SummaryThe aim of this study was to determine the effects of intra-articular hyaluronic acid on meniscal healing. Circular defects, 1.0 mm in diameter, were made in the anterior third of the medial meniscus in rabbits. In one joint, 0.4 ml hyaluronic acid (Healon®) was instilled, and in the contralateral (control) joint, 0.4 ml Ringer’s saline. Four rabbits were killed after four, eight and 12 weeks and the menisci examined histologically. By eight weeks most of the lesions had healed by filling with hyaline-like cartilage. Healing was not improved by hyaluronic acid treatment. The repair tissue stained strongly with alcian blue, and the presence of type II collagen, keratan sulphate, and chondroitin sulphate was demonstrated by immunohistochemical localisation. In contrast to the circular defects, longitudinal incisions made in the medial menisci of a further six rabbits did not show any healing after 12 weeks, indicating that the shape of the lesion largely determined the potential for healing.The effect of hyaluronic acid on meniscal healing was tested in a rabbit model. With one millimeter circular lesions in the medial meniscus, healing by filling with hyalinelike cartilage was not significantly affected by the application of hyaluronic acid intra-articularly at the time of surgery, compared to saline controls, as assessed histologically four, eight and 12 weeks after the operation.


2007 ◽  
Vol 27 (4) ◽  
pp. 345-356 ◽  
Author(s):  
Linda K. Myers ◽  
Bo Tang ◽  
Edward F. Rosioniec ◽  
John M. Stuart ◽  
Andrew H. Kang

Sign in / Sign up

Export Citation Format

Share Document