scholarly journals Transcription Factor Sp1 Promotes Chromatin Remodeling at DNA Double‐Strand Breaks

2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Kate Beishline ◽  
Sravanthi Koduri ◽  
Jane Clifford
2006 ◽  
Vol 37 (5-7) ◽  
pp. 261-269 ◽  
Author(s):  
Lai-Yee Wong ◽  
Judith Recht ◽  
Brehon C. Laurent

2005 ◽  
Vol 57 (1) ◽  
pp. 97-110 ◽  
Author(s):  
Tom R. Meddows ◽  
Andrew P. Savory ◽  
Jane I. Grove ◽  
Timothy Moore ◽  
Robert G. Lloyd

2006 ◽  
Vol 27 (5) ◽  
pp. 1602-1613 ◽  
Author(s):  
Eun Yong Shim ◽  
Soo Jin Hong ◽  
Ji-Hyun Oum ◽  
Yvonne Yanez ◽  
Yu Zhang ◽  
...  

ABSTRACT Repair of DNA double-strand breaks (DSBs) protects cells and organisms, as well as their genome integrity. Since DSB repair occurs in the context of chromatin, chromatin must be modified to prevent it from inhibiting DSB repair. Evidence supports the role of histone modifications and ATP-dependent chromatin remodeling in repair and signaling of chromosome DSBs. The key questions are, then, what the nature of chromatin altered by DSBs is and how remodeling of chromatin facilitates DSB repair. Here we report a chromatin alteration caused by a single HO endonuclease-generated DSB at the Saccharomyces cerevisiae MAT locus. The break induces rapid nucleosome migration to form histone-free DNA of a few hundred base pairs immediately adjacent to the break. The DSB-induced nucleosome repositioning appears independent of end processing, since it still occurs when the 5′-to-3′ degradation of the DNA end is markedly reduced. The tetracycline-controlled depletion of Sth1, the ATPase of RSC, or deletion of RSC2 severely reduces chromatin remodeling and loading of Mre11 and Yku proteins at the DSB. Depletion of Sth1 also reduces phosphorylation of H2A, processing, and joining of DSBs. We propose that RSC-mediated chromatin remodeling at the DSB prepares chromatin to allow repair machinery to access the break and is vital for efficient DSB repair.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009807
Author(s):  
Marco Gnugnoli ◽  
Erika Casari ◽  
Maria Pia Longhese

Repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) requires that the 5’-terminated DNA strands are resected to generate single-stranded DNA overhangs. This process is initiated by a short-range resection catalyzed by the MRX (Mre11-Rad50-Xrs2) complex, which is followed by a long-range step involving the nucleases Exo1 and Dna2. Here we show that the Saccharomyces cerevisiae ATP-dependent chromatin-remodeling protein Chd1 participates in both short- and long-range resection by promoting MRX and Exo1 association with the DSB ends. Furthermore, Chd1 reduces histone occupancy near the DSB ends and promotes DSB repair by HR. All these functions require Chd1 ATPase activity, supporting a role for Chd1 in the opening of chromatin at the DSB site to facilitate MRX and Exo1 processing activities.


Cell ◽  
2013 ◽  
Vol 152 (6) ◽  
pp. 1344-1354 ◽  
Author(s):  
Brendan D. Price ◽  
Alan D. D’Andrea

2012 ◽  
Vol 199 (7) ◽  
pp. 1067-1081 ◽  
Author(s):  
Céline Courilleau ◽  
Catherine Chailleux ◽  
Alain Jauneau ◽  
Fanny Grimal ◽  
Sébastien Briois ◽  
...  

DNA damage signaling and repair take place in a chromatin context. Consequently, chromatin-modifying enzymes, including adenosine triphosphate–dependent chromatin remodeling enzymes, play an important role in the management of DNA double-strand breaks (DSBs). Here, we show that the p400 ATPase is required for DNA repair by homologous recombination (HR). Indeed, although p400 is not required for DNA damage signaling, DNA DSB repair is defective in the absence of p400. We demonstrate that p400 is important for HR-dependent processes, such as recruitment of Rad51 to DSB (a key component of HR), homology-directed repair, and survival after DNA damage. Strikingly, p400 and Rad51 are present in the same complex and both favor chromatin remodeling around DSBs. Altogether, our data provide a direct molecular link between Rad51 and a chromatin remodeling enzyme involved in chromatin decompaction around DNA DSBs.


Reproduction ◽  
2016 ◽  
Vol 152 (5) ◽  
pp. 431-437 ◽  
Author(s):  
Zechen Yan ◽  
Dandan Fan ◽  
Qingjun Meng ◽  
Jinjian Yang ◽  
Wei Zhao ◽  
...  

The production of haploid gametes by meiosis is a cornerstone of sexual reproduction and maintenance of genome integrity.Zfp38mRNA is expressed in spermatocytes, indicating that transcription factor ZFP38 has the potential to regulate transcription during meiosis. In this study, we generatedZfp38conditional knockout mice (Zfp38flox/flox,Stra8-Cre, hereafter calledZfp38cKO) and found that spermatogenesis did not progress beyond meiosis prophase I inZfp38cKO mice. Using a chromosomal spread technique, we observed thatZfp38cKO spermatocytes exhibited a failure in chromosomal synapsis observed by SYCP1/SYCP3 double staining. Progression of DNA double-strand breaks (DSB) repair is disrupted inZfp38cKO spermatocytes, as revealed by γ-H2AX, RAD51 and MLH1 staining. Furthermore, the mRNA and protein levels of DSB repair enzymes and factors that guide their loading onto sites of DSBs, such as RAD51, DMC1, RAD51, TEX15 and PALB2, were significantly reduced inZfp38cKO spermatocytes. Taken together, our data suggest that ZFP38 is critical for the chromosomal synapsis and DSB repairs partially via its regulation of DSB repair-associated protein expression during meiotic progression in mouse.


Sign in / Sign up

Export Citation Format

Share Document