A Physiologically Based, Recirculatory Model of the Kinetics and Dynamics of Propofol in Man
Background The disposition of propofol in man is commonly described using a three-compartment mamillary model. However, these models do not incorporate blood flows as parameters. This complicates the representation of the changes in blood flows that may occur in surgical patients. In contrast, complex physiologically based models are derived from data sets (e.g., tissue:blood partition coefficients) that may not be readily collected in man. Methods Alternatively, the authors report a recirculatory model of propofol disposition in a "standard" man that incorporates detailed descriptions of the lungs and brain, but with a lumped description of the remainder of the body. The model was parameterized from data in the literature using a "meta-modeling" approach. The first-pass passage of propofol through the venous vasculature and the lungs was a function of the injected drug mixing with cardiac output and passing through a three-"tank in series" model for the lungs. The brain was represented as a two-compartment model defined by cerebral blood flow and a permeability term. The Bispectral Index was a linear function of the mean brain concentration. The remainder of the body was represented by compartment systems for the liver, fast distribution and slow distribution. Results The model was a good fit of the data and was able to predict other data not used in the development of the model. Conclusions The model may ultimately find a role in improving the fidelity of patient simulators currently used to train anesthetists and for clinical practice simulation to optimize dosing and management strategies.