scholarly journals Increased Vulnerability of NFH-LacZ Transgenic Mouse to Traumatic Brain Injury-Induced Behavioral Deficits and Cortical Damage

1999 ◽  
Vol 19 (7) ◽  
pp. 762-770 ◽  
Author(s):  
Michio Nakamura ◽  
Kathryn E. Saatman ◽  
James E. Galvin ◽  
Uwe Scherbel ◽  
Ramesh Raghupathi ◽  
...  

The authors evaluated the neurobehavioral and neuropathologic sequelae after traumatic brain injury (TBI) in transgenic (TG) mice expressing truncated high molecular weight neurofilament (NF) protein fused to beta-galactosidase (NFH-LacZ), which develop Lewy body-like NF-rich inclusions throughout the CNS. TG mice and their wild-type (WT) littermates were subjected to controlled cortical impact brain injury (TG, n=19; WT, n=17) or served as uninjured controls (TG, n =11; WT, n =11). During a 3-week period, mice were evaluated with an array of neuromotor function tests including neuroscore, beam balance, and both fast and slow acceleration rotarod. Brain-injured WT and TG mice showed significant motor dysfunction until 15 days and 21 days post-injury, respectively ( P < .025). Compared with brain-injured WT mice, brain-injured TG mice had significantly greater motor dysfunction as assessed by neuroscore ( P < .01) up to and including 15 days post-injury. Similarly, brain-injured TG mice performed significantly worse than brain-injured WT mice on slow acceleration rotarod at 2, 8, and 15 days post-injury ( P < .05), and beam balance over 2 weeks post-injury ( P < .01). Histopathologic analysis showed significantly greater tissue loss in the injured hemisphere in TG mice at 4 weeks post-injury ( P < .01). Together these data show that NFH-LacZ TG mice are more behaviorally and histologically vulnerable to TBI than WT mice, suggesting that the presence of NF-rich inclusions may exacerbate neuromotor dysfunction and cell death after TBI.

2021 ◽  
Vol 22 (15) ◽  
pp. 8276
Author(s):  
Pen-Sen Huang ◽  
Ping-Yen Tsai ◽  
Ling-Yu Yang ◽  
Daniela Lecca ◽  
Weiming Luo ◽  
...  

Traumatic brain injury (TBI) is a leading cause of disability and mortality worldwide. It can instigate immediate cell death, followed by a time-dependent secondary injury that results from disproportionate microglial and astrocyte activation, excessive inflammation and oxidative stress in brain tissue, culminating in both short- and long-term cognitive dysfunction and behavioral deficits. Within the brain, the hippocampus is particularly vulnerable to a TBI. We studied a new pomalidomide (Pom) analog, namely, 3,6′-dithioPom (DP), and Pom as immunomodulatory imide drugs (IMiD) for mitigating TBI-induced hippocampal neurodegeneration, microgliosis, astrogliosis and behavioral impairments in a controlled cortical impact (CCI) model of TBI in rats. Both agents were administered as a single intravenous dose (0.5 mg/kg) at 5 h post injury so that the efficacies could be compared. Pom and DP significantly reduced the contusion volume evaluated at 24 h and 7 days post injury. Both agents ameliorated short-term memory deficits and anxiety behavior at 7 days after a TBI. The number of degenerating neurons in the CA1 and dentate gyrus (DG) regions of the hippocampus after a TBI was reduced by Pom and DP. DP, but not Pom, significantly attenuated the TBI-induced microgliosis and DP was more efficacious than Pom at attenuating the TBI-induced astrogliosis in CA1 and DG at 7D after a TBI. In summary, a single intravenous injection of Pom or DP, given 5 h post TBI, significantly reduced hippocampal neurodegeneration and prevented cognitive deficits with a concomitant attenuation of the neuroinflammation in the hippocampus.


2020 ◽  
Vol 21 (2) ◽  
pp. 387
Author(s):  
Ilknur Ozen ◽  
Karsten Ruscher ◽  
Robert Nilsson ◽  
Johanna Flygt ◽  
Fredrik Clausen ◽  
...  

Traumatic brain injury (TBI) increases the risk of delayed neurodegenerative processes, including Parkinson’s disease (PD). Interleukin-1beta (IL-1β), a key pro-inflammatory cytokine, may promote secondary injury development after TBI. Conversely, neutralizing IL-1β was found to improve functional recovery following experimental TBI. However, the mechanisms underlying the behavioral improvements observed by IL-1β neutralization are still poorly understood. The present study investigated the role of IL-1β on the microglia response and neuronal changes in the globus pallidus in response to diffuse TBI. Mice were subjected to sham injury or the central fluid percussion injury (cFPI) (a model of traumatic axonal injury), and were randomly administered an IL-1β neutralizing or a control antibody at 30 min post-injury. The animals were analyzed at 2, 7, or 14 days post-injury. When compared to controls, mice subjected to cFPI TBI had increased microglia activation and dopaminergic innervation in the globus pallidus, and a decreased number of parvalbumin (PV) positive interneurons in the globus pallidus. Neutralization of IL-1β attenuated the microglia activation, prevented the loss of PV+ interneurons and normalized dopaminergic fiber density in the globus pallidus of brain-injured animals. These findings argue for an important role for neuro-inflammation in the PD-like pathology observed in TBI.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hector Arciniega ◽  
Jorja Shires ◽  
Sarah Furlong ◽  
Alexandrea Kilgore-Gomez ◽  
Adelle Cerreta ◽  
...  

AbstractMild traumatic brain injury (mTBI), or concussion, accounts for 85% of all TBIs. Yet survivors anticipate full cognitive recovery within several months of injury, if not sooner, dependent upon the specific outcome/measure. Recovery is variable and deficits in executive function, e.g., working memory (WM) can persist years post-mTBI. We tested whether cognitive deficits persist in otherwise healthy undergraduates, as a conservative indicator for mTBI survivors at large. We collected WM performance (change detection, n-back tasks) using various stimuli (shapes, locations, letters; aurally presented numbers and letters), and wide-ranging cognitive assessments (e.g., RBANS). We replicated the observation of a general visual WM deficit, with preserved auditory WM. Surprisingly, visual WM deficits were equivalent in participants with a history of mTBI (mean 4.3 years post-injury) and in undergraduates with recent sports-related mTBI (mean 17 days post-injury). In seeking the underlying mechanism of these behavioral deficits, we collected resting state fMRI (rsfMRI) and EEG (rsEEG). RsfMRI revealed significantly reduced connectivity within WM-relevant networks (default mode, central executive, dorsal attention, salience), whereas rsEEG identified no differences (modularity, global efficiency, local efficiency). In summary, otherwise healthy current undergraduates with a history of mTBI present behavioral deficits with evidence of persistent disconnection long after full recovery is expected.


2021 ◽  
Vol 22 (2) ◽  
pp. 907
Author(s):  
Saef Izzy ◽  
Alexander Brown-Whalen ◽  
Taha Yahya ◽  
Aliyah Sarro-Schwartz ◽  
Gina Jin ◽  
...  

Repetitive closed head injury (rCHI) is commonly encountered in young athletes engaged in contact and collision sports. Traumatic brain injury (TBI) including rCHI has been reported to be an important risk factor for several tauopathies in studies of adult humans and animals. However, the link between rCHI and the progression of tau pathology in adolescents remains to be elucidated. We evaluated whether rCHI can trigger the initial acceleration of pathological tau in adolescent mice and impact the long-term outcomes post-injury. To this end, we subjected adolescent transgenic mice expressing the P301S tau mutation to mild rCHI and assessed tau hyperphosphorylation, tangle formation, markers of neuroinflammation, and behavioral deficits at 40 days post rCHI. We report that rCHI did not accelerate tau pathology and did not worsen behavioral outcomes compared to control mice. However, rCHI induced cortical and hippocampal microgliosis and corpus callosum astrocytosis in P301S mice by 40 days post-injury. In contrast, we did not find significant microgliosis or astrocytosis after rCHI in age-matched WT mice or sham-injured P301S mice. Our data suggest that neuroinflammation precedes the development of Tau pathology in this rCHI model of adolescent repetitive mild TBI.


1997 ◽  
Vol 42 (2) ◽  
pp. 40-43 ◽  
Author(s):  
C.E. Skelton ◽  
R.M. Walley ◽  
J.B. Chisholm ◽  
R.L. Sloan

Results are reported from a study to identify patients residing in Fife with mild traumatic brain injury in the 16–65 year old age group, who attended an accident and emergency department following their brain injury. Over a two month period 161 such patients attended with minor head trauma, of which 33 entered our study. The major cause of mild traumatic brain injury was assault. We found that over two-thirds of patients in the study had persisting post-concussive symptoms six months post injury. Neuropsychological testing showed problems of concentration and memory, but not at a level that was significantly different from that expected in an average population. Other studies have shown that symptom rates are higher when patients get no explanation of their symptoms and we feel that better co-ordination of services for brain injured patients in Fife is required, to provide the necessary information, education and support.


2020 ◽  
Vol 35 (6) ◽  
pp. 919-919
Author(s):  
Lange R ◽  
Lippa S ◽  
Hungerford L ◽  
Bailie J ◽  
French L ◽  
...  

Abstract Objective To examine the clinical utility of PTSD, Sleep, Resilience, and Lifetime Blast Exposure as ‘Risk Factors’ for predicting poor neurobehavioral outcome following traumatic brain injury (TBI). Methods Participants were 993 service members/veterans evaluated following an uncomplicated mild TBI (MTBI), moderate–severe TBI (ModSevTBI), or injury without TBI (Injured Controls; IC); divided into three cohorts: (1) &lt; 12 months post-injury, n = 237 [107 MTBI, 71 ModSevTBI, 59 IC]; (2) 3-years post-injury, n = 370 [162 MTBI, 80 ModSevTBI, 128 IC]; and (3) 10-years post-injury, n = 386 [182 MTBI, 85 ModSevTBI, 119 IC]. Participants completed a 2-hour neurobehavioral test battery. Odds Ratios (OR) were calculated to determine whether the ‘Risk Factors’ could predict ‘Poor Outcome’ in each cohort separately. Sixteen Risk Factors were examined using all possible combinations of the four risk factor variables. Poor Outcome was defined as three or more low scores (&lt; 1SD) on five TBI-QOL scales (e.g., Fatigue, Depression). Results In all cohorts, the vast majority of risk factor combinations resulted in ORs that were ‘clinically meaningful’ (ORs &gt; 3.00; range = 3.15 to 32.63, all p’s &lt; .001). Risk factor combinations with the highest ORs in each cohort were PTSD (Cohort 1 & 2, ORs = 17.76 and 25.31), PTSD+Sleep (Cohort 1 & 2, ORs = 18.44 and 21.18), PTSD+Sleep+Resilience (Cohort 1, 2, & 3, ORs = 13.56, 14.04, and 20.08), Resilience (Cohort 3, OR = 32.63), and PTSD+Resilience (Cohort 3, OR = 24.74). Conclusions Singularly, or in combination, PTSD, Poor Sleep, and Low Resilience were strong predictors of poor outcome following TBI of all severities and injury without TBI. These variables may be valuable risk factors for targeted early interventions following injury.


CNS Spectrums ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 178-179
Author(s):  
John L. Sherman ◽  
Laurence J. Adams ◽  
Christen F. Kutz ◽  
Deborah York ◽  
Mitchell S. Szymczak

AbstractTraumatic brain injury (TBI) is a complex phenomenon affecting multiple areas of the brain in multiple ways. Both right and left hemispheres are affected as well as supratentorial and infratentorial compartments. These multifocal injuries are caused by many factors including acute mechanical injury, focal intracranial hemorrhage, blunt and rotational forces, epidural and subdural hematoma, hypoxemia, hypotension, edema, axonal damage, neuronal death, gliosis and blood brain barrier disruption. Clinicians and patients benefit by precise information about the neuroanatomical areas that are affected macroscopically, microscopically and biochemically in an individual patient.Standard imaging studies are frequently negative or grossly underestimate the severity of TBI and may exacerbate and prolong patient suffering with an imaging result of “no significant abnormality”. Specifically, sophisticated imaging tools have been developed which reveal significant damage to the brain structure including atrophy, MRI spectroscopy showing variations in neuronal metabolite N-acetyl-aspartate, elevations of membrane related Choline, and the glial metabolite myo-inositol is often observed to be increased post injury. In addition, susceptibility weighted imaging (SWI) has been shown to be more reliable for detecting microbleeds versus calcifications.We have selected two TBI patients with diffuse traumatic brain injury.The first patient is a 43-year-old male who suffered severe traumatic brain injury from a motorcycle accident in 2016. Following the accident, the patient was diagnosed with seizures, major depression, and intermittent explosive disorder. He has attempted suicide and has neurobehavioral disinhibition including severe anger, agitation and irritability. He denies psychiatric history prior to TBI and has negative family history. Following the TBI, he became physically aggressive and assaultive in public with minimal provocation. He denies symptoms of thought disorder and mania. He is negative for symptoms of  cognitive decline or encephalopathy.The second patient is a 49-year-old male who suffered at least 3 concussive blasts in the Army and a parachute injury. Following the last accident, the patient was diagnosed with major depressive disorder, panic disorder, PTSD and generalized anxiety disorder. He denies any psychiatric history prior to TBI including negative family history of psychiatric illness. In addition, he now suffers from nervousness, irritability, anger, emotional lability and concurrent concentration issues, problems completing tasks and alterations in memory.Both patients underwent 1.5T multiparametric MRI using standard T2, FLAIR, DWI and T1 sequences, and specialized sequences including susceptibility weighted (SWAN/SWI), 3D FLAIR, single voxel MRI spectroscopy (MRS), diffusion tensor imaging (DTI), arterial spin labeling perfusion (ASL) and volumetric MRI (NeuroQuant). Importantly, this exam can be performed in 30–45 minutes and requires no injections other than gadolinium in some patients. We will discuss the insights derived from the MRI which detail the injured areas, validate the severity of the brain damage, and provide insight into the psychological, motivational and physical disabilities that afflict these patients. It is our expectation that this kind of imaging study will grow in value as we link specific patterns of injury to specific symptoms and syndromes resulting in more targeted therapies in the future.


Author(s):  
Sara M. Lippa ◽  
Jessica Gill ◽  
Tracey A. Brickell ◽  
Louis M. French ◽  
Rael T. Lange

Abstract Objective: This study examines the relationship of serum total tau, neurofilament light (NFL), ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1), and glial fibrillary acidic protein (GFAP) with neurocognitive performance in service members and veterans with a history of traumatic brain injury (TBI). Method: Service members (n = 488) with a history of uncomplicated mild (n = 172), complicated mild, moderate, severe, or penetrating TBI (sTBI; n = 126), injured controls (n = 116), and non-injured controls (n = 74) prospectively enrolled from Military Treatment Facilities. Participants completed a blood draw and neuropsychological assessment a year or more post-injury. Six neuropsychological composite scores and presence/absence of mild neurocognitive disorder (MNCD) were evaluated. Within each group, stepwise hierarchical regression models were conducted. Results: Within the sTBI group, increased serum UCH-L1 was related to worse immediate memory and delayed memory (R2Δ = .065–.084, ps < .05) performance, while increased GFAP was related to worse perceptual reasoning (R2Δ = .030, p = .036). Unexpectedly, within injured controls, UCH-L1 and GFAP were inversely related to working memory (R2Δ = .052–.071, ps < .05), and NFL was related to executive functioning (R2Δ = .039, p = .021) and MNCD (Exp(B) = 1.119, p = .029). Conclusions: Results suggest GFAP and UCH-L1 could play a role in predicting poor cognitive outcome following complicated mild and more severe TBI. Further investigation of blood biomarkers and cognition is warranted.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Amer Toutonji ◽  
Mamatha Mandava ◽  
Silvia Guglietta ◽  
Stephen Tomlinson

AbstractActivation of the complement system propagates neuroinflammation and brain damage early and chronically after traumatic brain injury (TBI). The complement system is complex and comprises more than 50 components, many of which remain to be characterized in the normal and injured brain. Moreover, complement therapeutic studies have focused on a limited number of histopathological outcomes, which while informative, do not assess the effect of complement inhibition on neuroprotection and inflammation in a comprehensive manner. Using high throughput gene expression technology (NanoString), we simultaneously analyzed complement gene expression profiles with other neuroinflammatory pathway genes at different time points after TBI. We additionally assessed the effects of complement inhibition on neuropathological processes. Analyses of neuroinflammatory genes were performed at days 3, 7, and 28 post injury in male C57BL/6 mice following a controlled cortical impact injury. We also characterized the expression of 59 complement genes at similar time points, and also at 1- and 2-years post injury. Overall, TBI upregulated the expression of markers of astrogliosis, immune cell activation, and cellular stress, and downregulated the expression of neuronal and synaptic markers from day 3 through 28 post injury. Moreover, TBI upregulated gene expression across most complement activation and effector pathways, with an early emphasis on classical pathway genes and with continued upregulation of C2, C3 and C4 expression 2 years post injury. Treatment using the targeted complement inhibitor, CR2-Crry, significantly ameliorated TBI-induced transcriptomic changes at all time points. Nevertheless, some immune and synaptic genes remained dysregulated with CR2-Crry treatment, suggesting adjuvant anti-inflammatory and neurotropic therapy may confer additional neuroprotection. In addition to characterizing complement gene expression in the normal and aging brain, our results demonstrate broad and chronic dysregulation of the complement system after TBI, and strengthen the view that the complement system is an attractive target for TBI therapy.


Author(s):  
Veronik Sicard ◽  
Danielle C. Hergert ◽  
Sharvani Pabbathi Reddy ◽  
Cidney R. Robertson-Benta ◽  
Andrew B. Dodd ◽  
...  

Abstract Objective: This study aimed to examine the predictors of cognitive performance in patients with pediatric mild traumatic brain injury (pmTBI) and to determine whether group differences in cognitive performance on a computerized test battery could be observed between pmTBI patients and healthy controls (HC) in the sub-acute (SA) and the early chronic (EC) phases of injury. Method: 203 pmTBI patients recruited from emergency settings and 159 age- and sex-matched HC aged 8–18 rated their ongoing post-concussive symptoms (PCS) on the Post-Concussion Symptom Inventory and completed the Cogstate brief battery in the SA (1–11 days) phase of injury. A subset (156 pmTBI patients; 144 HC) completed testing in the EC (∼4 months) phase. Results: Within the SA phase, a group difference was only observed for the visual learning task (One-Card Learning), with pmTBI patients being less accurate relative to HC. Follow-up analyses indicated higher ongoing PCS and higher 5P clinical risk scores were significant predictors of lower One-Card Learning accuracy within SA phase, while premorbid variables (estimates of intellectual functioning, parental education, and presence of learning disabilities or attention-deficit/hyperactivity disorder) were not. Conclusions: The absence of group differences at EC phase is supportive of cognitive recovery by 4 months post-injury. While the severity of ongoing PCS and the 5P score were better overall predictors of cognitive performance on the Cogstate at SA relative to premorbid variables, the full regression model explained only 4.1% of the variance, highlighting the need for future work on predictors of cognitive outcomes.


Sign in / Sign up

Export Citation Format

Share Document